Correntropy and Linear Representation

Part of the SpringerBriefs in Computer Science book series (BRIEFSCOMPUTER)


The nearest neighbor (NN) classifier is the most popular method for image-based object recognition. In NN classifier, the representational capacity of an image database and the recognition rate depend on how registered samples are selected to represent object’s possible variations and also how many samples are available. However, in practice, only a small number of samples are available for an object class. Hence linear representation methods are developed to generalize the representational capacity of available samples.


Near Neighbor Query Point Kernel Size Stability Score Near Neighbor Classifier 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 13.
    Boyd, S., Vandenberghe, L.: Convex optimization. Cambridge University Press (2004)Google Scholar
  2. 27.
    Chien, J.T., Wu, C.C.: Discriminant waveletfaces and nearest feature classifiers for face recognition. IEEE Transactions on Pattern Analysis and Machine Intelligence 24(12), 1644–1649 (2002)CrossRefGoogle Scholar
  3. 39.
    Donoho, D.L., Stodden, V.: Breakdown point of model selection when the number of variables exceeds the number of observations. In: Proceedings of the International Joint Conference on Neural Networks, pp. 16–21 (2006)Google Scholar
  4. 40.
    Donoho, D.L., Tanner, J.: Sparse nonnegative solutions of underdetermined linear equations by linear programming. In: Proceedings of the National Academy of Sciences, vol. 102, pp. 9446–9451 (2005)MathSciNetGoogle Scholar
  5. 42.
    Donoho, D.L., Tsaig, Y.: Fast solution of l 1-norm minimization problems when the solution may be sparse. IEEE Transactions on Information Theory 54(11), 4789–4812 (2008)CrossRefzbMATHMathSciNetGoogle Scholar
  6. 48.
    Fidler, S., Skocaj, D., Leonardis, A.: Combining reconstructive and discriminative subspace methods for robust classification and regression by subsampling. IEEE Transactions on Pattern Analysis and Machine Intelligence 28(3), 337–350 (2006)CrossRefGoogle Scholar
  7. 58.
    He, R., Hu, B.G., Yuan, X.: Robust discriminant analysis based on nonparametric maximum entropy. In: Asian Conference on Machine Learning (2009)Google Scholar
  8. 59.
    He, R., Hu, B.G., Yuan, X., Zheng, W.S.: Principal component analysis based on nonparametric maximum entropy. Neurocomputing 73, 1840–1952 (2010)CrossRefGoogle Scholar
  9. 60.
    He, R., Hu, B.G., Zheng, W.S., Guo, Y.Q.: Two-stage sparse representation for robust recognition on large-scale database. In: AAAI Conference on Artificial Intelligence, pp. 475–480 (2010)Google Scholar
  10. 67.
    He, R., Zheng, W.S., Hu, B.G., Kong, X.W.: Two-stage nonnegative sparse representation for large-scale face recognition. IEEE Transactions on Neural Network and Learning System 34(1), 35–46 (2013)Google Scholar
  11. 72.
    Hotelling, H.: Analysis of a complex of statistical variables into principal components. Journal of Educational Psychology 24, 417–441 (1933)CrossRefGoogle Scholar
  12. 77.
    Hyvarinen, A.: Fast and robust fixed-point algorithms for independent component analysis. IEEE Transactions on Neural Networks 10, 626–634 (1999)CrossRefGoogle Scholar
  13. 85.
    Jia, H., Martinez, A.M.: Support vector machines in face recognition with occlusions. In: Proceedings of IEEE Conference on Computer Vision and Pattern Recognition, pp. 136–141 (2009)Google Scholar
  14. 86.
    Kapur, J.: Measures of information and their applications. John Wiley, New York (1994)zbMATHGoogle Scholar
  15. 88.
    Lee, H., Battle, A., Raina, R., Ng, A.Y.: Efficient sparse coding algorithms. In: Proceedings of Neural Information Processing Systems, vol. 19, pp. 801–808 (2006)Google Scholar
  16. 93.
    Li, S.Z., Lu, J.: Face recognition using the nearest feature line method. IEEE Transactions Neural Network 10(2), 439–443 (1999)CrossRefGoogle Scholar
  17. 94.
    Li, W., Swetits, J.J.: The linear 1 estimator and the Huber m-estimator. SIAM Journal on Optimization 8(2), 457–475 (1998)CrossRefzbMATHMathSciNetGoogle Scholar
  18. 95.
    Li, X.X., Dai, D.Q., Zhang, X.F., Ren, C.X.: Structured sparse error coding for face recognition with occlusion. IEEE Transactions on Image Processing 22(5), 1889–1900 (2013)CrossRefMathSciNetGoogle Scholar
  19. 98.
    Liu, W.F., Pokharel, P.P., Principe, J.C.: Correntropy: Properties and applications in non-gaussian signal processing. IEEE Transactions on Signal Processing 55(11), 5286–5298 (2007)CrossRefMathSciNetGoogle Scholar
  20. 99.
    Luenberger, D.: Optimization by vector space methods. Wiley (1969)Google Scholar
  21. 109.
    Newman, D., Hettich, S., Blake, C., Merz, C.: Uci repository of machine learning databases. (1998)
  22. 112.
    Niu, G., Dai, B., Yamada, M., Sugiyama, M.: Information-theoretic semi-supervised metric learning via entropy regularization. In: International Conference on Machine Learning (2012)Google Scholar
  23. 131.
    Roweis, S.: EM algorithms for PCA and SPCA. In: Neural Information Processing Systems (NIPS), pp. 626–632 (1997)Google Scholar
  24. 135.
    Sharma, A., Paliwal, K.: Fast principal component analysis using fixed-point algorithm. Pattern Recognition Letters 28, 1151–1155 (2007)CrossRefGoogle Scholar
  25. 136.
    Shi, Q., Eriksson, A., van den Hengel, A., Shen, C.: Face recognition really a compressive sensing problem. In: Proceedings of IEEE Conference on Computer Vision and Pattern Recognition, pp. 553–560 (2011)Google Scholar
  26. 139.
    Sun, X.: Matrix Perturbation Analysis. Chinese Science Press (2001)Google Scholar
  27. 142.
    Torkkola, K.: Feature extraction by nonparametric mutual information maximization. Journal of Machine Learning Research 3, 1415–1438 (2003)zbMATHMathSciNetGoogle Scholar
  28. 146.
    Vo, N., Moran, B., Challa, S.: Nonnegative-least-square classifier for face recognition. In: Proceedings of International Symposium on Neural Networks:Advances in Neural Networks, pp. 449–456 (2009)Google Scholar
  29. 147.
    Wakin, M., Laska, J., Duarte, M., Baron, D., Sarvotham, S., Takhar, D., Kelly, K., Baraniuk, R.: An architecture for compressive image. In: Proceedings of International Conference on Image Processing, pp. 1273–1276 (2006)Google Scholar
  30. 159.
    Yang, M., Zhang, L., Yang, J., Zhang, D.: Robust sparse coding for face recognition. In: Proceedings of IEEE Conference on Computer Vision and Pattern Recognition, pp. 625–632 (2011)Google Scholar
  31. 167.
    Zhang, Y., Sun, Z., He, R., Tan, T.: Robust low-rank representation via correntropy. In: Asian Conference on Pattern Recognition (2013)Google Scholar

Copyright information

© The Author(s) 2014

Authors and Affiliations

  1. 1.National Laboratory of Pattern RecognitionInstitute of Automation Chinese Academy of SciencesBeijingChina
  2. 2.School of Information and ControlNanjing University of Information Science and TechnologyNanjingChina

Personalised recommendations