Skip to main content

Mathematical Models of Multivariable Systems

  • Conference paper
  • 1184 Accesses

Part of the book series: Advances in Intelligent Systems and Computing ((AISC,volume 289))

Abstract

The paper is focused on the build of a mathematical models of multivariable systems by the method of experimental identification. The created model is used for predicting the static and dynamic behavior of the controlled system in the closed loop. Dynamic properties of systems are described by the differential equations. In the experimental part are identified the parameters of the mathematical model of rectifying column. As an example, the multivariable controlled system, in this case is described the dependence of concentration distilled mixture on change the flow of reflux and flow of vapor.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Wang, J., Wang, H.-W., Gu, H.: A novel recursive subspace identification approach of closed-loop systems. Mathematical and Computer Modelling of Dynamical Systems 19(6), 526–539 (2013), http://www.tandfonline.com/doi/abs/10.1080/13873954.2013.801355 (cited), doi:10.1080/13873954.2013.801355

    Article  MathSciNet  Google Scholar 

  2. Chen, L., Tulsyan, A., Huang, B., Liu, F.: Multiple model approach to nonlinear system identification with an uncertain scheduling variable using EM algorithm. Journal of Process Control. 23(10), 1480–1496 (2013), http://linkinghub.elsevier.com/retrieve/pii/S0959152413001820 (cited), doi:10.1016/j.jprocont.2013.09.013

    Article  Google Scholar 

  3. Cadavid, J.G., Godoy-Silva, R.D., Narvaez, P.C., Camargo, M., Fonteix, C.: Biodiesel production in a counter-current reactive extraction column: Modelling, parametric identification and optimisation. Chemical Engineering Journal 228, 717–723 (2013), http://linkinghub.elsevier.com/retrieve/pii/S1385894713006591 (cited), doi:10.1016/j.cej.2013.05.040

    Article  Google Scholar 

  4. Torkamani, S., Butcher, E.A., Khasawneh, F.A.: Parameter identification in periodic delay differential equations with distributed delay. Communications in Nonlinear Science and Numerical Simulation 18(4), 1016–1026 (2013), http://linkinghub.elsevier.com/retrieve/pii/S1007570412004182 (cited), doi:10.1016/j.cnsns.2012.09.001

    Article  MATH  MathSciNet  Google Scholar 

  5. Abbassi, F., Belhadj, T., Mistou, S., Zghal, A.: Parameter identification of a mechanical ductile damage using Artificial Neural Networks in sheet metal forming. Materials 45, 605–615 (2013), http://linkinghub.elsevier.com/retrieve/pii/S0261306912006632 (cited), doi:10.1016/j.matdes.2012.09.032

    Google Scholar 

  6. Victor, S., Malti, R., Garnier, H., Oustaloup, A.: Parameter and differentiation order estimation in fractional models. Automatica 49(4), 926–935 (2013), http://linkinghub.elsevier.com/retrieve/pii/S0005109813000277 (cited), doi:10.1016/j.automatica.2013.01.026

    Article  MATH  MathSciNet  Google Scholar 

  7. Valderrama, J.O., Faúndez, C.A., Toselli, L.A.: Advances on modeling and simulation of alcoholic distillation. Part 1: Thermodynamic modeling. Food and Bioproducts Processing 90(4), 819–831 (2000), http://linkinghub.elsevier.com/retrieve/pii/S0960308512000302 (dostupné), doi:10.1016/j.fbp.2012.04.004

  8. Valderrama, J.O., Toselli, L.A., Faúndez, C.A.: Advances on modeling and simulation of alcoholic distillation. Part 2: Process simulation. Food and Bioproducts Processing 90(4), 832–840 (2000), http://linkinghub.elsevier.com/retrieve/pii/S0960308512000296 (dostupné), doi:10.1016/j.fbp.2012.04.003

    Article  Google Scholar 

  9. Isermann, R.: Digitale Regelsysteme: Band II, Stochastische Regelungen, Mehrgrössenregelungen, Adaptive Regelunungen, Anwendungen. 2. überarb. u. erw. Aufl. Springer, Berlin (1987) ISBN 35-401-6597-5

    Google Scholar 

  10. Isermann, R.: Digitale Regelsysteme: Band I, Grundlagen Deterministische Regelungen. 2. überarb. und erw. Aufl. Springer, Berlin (1987) ISBN 35-401-6596-7

    Google Scholar 

  11. Jehlička, V.: Mathematical Models of Controlled Systems. In: Zelinka, I., Chen, G., Rössler, O.E., Snasel, V., Abraham, A. (eds.) Nostradamus 2013: Prediction, Model. & Analysis. AISC, vol. 210, pp. 257–264. Springer, Heidelberg (2013)

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this paper

Cite this paper

Jehlička, V. (2014). Mathematical Models of Multivariable Systems. In: Zelinka, I., Suganthan, P., Chen, G., Snasel, V., Abraham, A., Rössler, O. (eds) Nostradamus 2014: Prediction, Modeling and Analysis of Complex Systems. Advances in Intelligent Systems and Computing, vol 289. Springer, Cham. https://doi.org/10.1007/978-3-319-07401-6_31

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-07401-6_31

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-07400-9

  • Online ISBN: 978-3-319-07401-6

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics