Skip to main content

Investigation of Carbon Nanotube Defects on Its Strength Using Nonlinear Finite Element Modeling

  • Chapter
  • First Online:
  • 2258 Accesses

Part of the book series: Advanced Structured Materials ((STRUCTMAT,volume 54))

Abstract

Due to their remarkable properties, carbon nanotubes have been used in many engineering applications in the form of composite. In some cases, however defects may occur and lead to poor strength of the composite. In this chapter, a finite element method has been developed to evaluate mechanical behavior of defective CNTs and graphene sheets. Stone-Wales defect (5-7-7-5) and vacancies in SWCNTs and graphene sheets with different hilarities were studied under axial load. The results show that CNTs and grapheme structures are sensitive to vacancies. However, the armchair grapheme structures have significant resistance to defect under tensile load. Present results are in good agreement with available literature.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Andrews, R., Jacques, D., Qian, D., et al.: Purification and structural annealing carbon nanotubes at graphitization temperatures. Carbon 39, 1681 (2001)

    Article  Google Scholar 

  2. Mawhinney, D.B., Naumenko, V., Kuznetsova, A., et al.: Surface defect site density on single walled carbon nanotubes by titration. Chem. Phys. Lett. 6, 213 (2000)

    Article  Google Scholar 

  3. Gojny, F.H., Nastalczyk, J., Roslaniec, Z., et al.: Influence of different carbon nanotubes on the mechanical properties of epoxy matrix composites–a comparative study. Chem. Phys. Lett. 370, 820 (2003)

    Article  Google Scholar 

  4. Gojny, F.H., Schulte, K.: Functionalisation effect on the thermo-mechanical behaviour of multi-wall carbon nanotube/epoxy-composites. Comp. Sci. Tech. 64, 2303 (2004)

    Article  Google Scholar 

  5. Nardelli, M.B., Fattebert, J.L., Orlikowski, D., et al.: Mechanical properties, defects and electronic behavior of carbon nanotubes. Carbon 38, 1703 (2000)

    Article  Google Scholar 

  6. Sammalkorpi, M., Krasheninnikov, A., Kuronen, A., et al.: Mechanical properties of carbon nanotubes with vacancies and related defects. Phys. Rev. B 70, 245 (2004)

    Article  Google Scholar 

  7. Lu, Q., Bhattacharya, B.: Effect of randomly occurring stone–wales defects on mechanical properties of carbon nanotubes using atomistic simulation. Nanotechnology 16, 555 (2005)

    Article  Google Scholar 

  8. Brenner, D.W.: Empirical potential for hydrocarbons for use in simulating the chemical vapor deposition of diamond films. Phys. Rev. B 42, 9458 (1990)

    Article  Google Scholar 

  9. Zhang, P., Huang, Y., Geubelle, P.H., et al.: The elastic modulus of single-wall carbon nanotubes: a continuum analysis incorporating interatomic potentials. Int. J. Solids Struct. 39, 3893 (2002)

    Article  MATH  Google Scholar 

  10. Jiang, H., Zhang, P., Liu, B., et al.: The effect of nanotube radius on the constitutive model for carbon nanotubes. Comput. Mater. Sci. 28, 429 (2003)

    Article  Google Scholar 

  11. Xiao, X.R., Gama, B.A., Gillespie, J.W.: An analytical molecular structural mechanics model for the mechanical properties of carbon nanotubes. Int. J. Solids Struct. 42, 3075 (2005)

    Article  MATH  Google Scholar 

  12. Belytschko, T., Xiao, S.P., Schatz, G.C., et al.: Atomistic simulations of nanotube fracture. Phys. Rev. B 65, 235 (2002)

    Article  Google Scholar 

  13. Rahmandoust, M., Öchsner, A.: Influence of structural imperfections and doping on the mechanical properties of single-walled carbon nanotubes. J. Nano Res. 6, 185–196 (2009)

    Article  Google Scholar 

  14. Ghavamian, A., Rahmandoust, M., Öchsner, A.: A numerical evaluation of the influence of defects on the elastic modulus of single and multi-walled carbon nanotubes. Comput. Mater. Sci. 62, 110–116 (2012)

    Article  Google Scholar 

  15. Huxtable, S.T., Cahill, D.G., Shenogin, S.: Interfacial heat flow in carbon nanotube suspensions. Nat. Mater. 2, 731 (2003)

    Article  Google Scholar 

  16. Shenogin, S., Bodapati, A., Xue, L.: Deformation of glassy polycarbonate and polystyrene: the influence of chemical structure and local environment. Appl. Phys. Lett. 85, 2229 (2004)

    Article  Google Scholar 

  17. Jiang, H., Feng, X.Q., Huang, Y.: Defect nucleation in carbon nanotubes under tension and torsion: stone–wales transformation. Comput. Methods Appl. Mech. Eng. 193, 3419 (2004)

    Article  MATH  Google Scholar 

  18. Tserpes, K.I., Papanikos, P., Tsirkas, S.A.: A progressive fracture model for carbon nanotubes. Compos. B: Eng. 37, 662 (2006)

    Article  Google Scholar 

  19. Tserpes, K.I., Papanikos, P.: The effect of stone–wales defect on the tensile behavior and fracture of single-walled carbon nanotubes. Comp. Struct. 79, 581 (2007)

    Article  Google Scholar 

  20. Stone, A.J., Wales, D.J.: Theoretical studies of icosahedral C60 and some related structures. Chem. Phys. Lett. 128, 501 (1986)

    Article  Google Scholar 

  21. Abell, G.C.: Empirical chemical pseudopotential theory of molecular and metallic bonding. Phys. Rev. B 31, 6184 (1985)

    Article  Google Scholar 

  22. Tersoff, J.: Empirical interatomic potential for carbon with applications to amorphous-carbon. Phys. Rev. Let. 61, 2872 (1988)

    Article  Google Scholar 

  23. Li, C.Y., Chou, T.W.: A structural mechanics approach for the analysis of carbon nanotubes. Int. J. Solids Struct. 40, 2487 (2003)

    Article  MATH  Google Scholar 

  24. Chang, T., Gao, H.: Size-dependent elastic properties of a single-walled carbon nanotube via a molecular mechanics model. J. Mech. Phys. Solids 51, 1059 (2003)

    Article  MATH  Google Scholar 

  25. Kalamkarov, A.L., Georgiades, A.V., Rokkam, S.K., et al.: Analytical and numerical techniques to predict carbon nanotubes properties. Int. J. Solids Struct. 43, 6832 (2006)

    Article  MATH  Google Scholar 

  26. Yu, M.F., Files, B.S., Arepalli, S., et al.: Tensile loading of ropes of single wall carbon nanotubes and their mechanical properties. Phys. Rev. Lett. 84, 5552 (2000)

    Article  Google Scholar 

Download references

Acknowledgements

The authors wish to acknowledge the financial supports given by the Ministry of Science Technology and Innovation (MOSTI) under an E-science grant No. 158-200-147 and Universiti Teknologi PETRONAS.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mokhtar Awang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Mohammadpour, E., Awang, M. (2014). Investigation of Carbon Nanotube Defects on Its Strength Using Nonlinear Finite Element Modeling. In: Öchsner, A., Altenbach, H. (eds) Design and Computation of Modern Engineering Materials. Advanced Structured Materials, vol 54. Springer, Cham. https://doi.org/10.1007/978-3-319-07383-5_27

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-07383-5_27

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-07382-8

  • Online ISBN: 978-3-319-07383-5

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics