Skip to main content

Dizziness

  • Chapter
  • First Online:
Clinical Autonomic Dysfunction

Abstract

In general, there are four conditions that directly lead to dizziness or lightheadedness: vestibular dysfunction, arrhythmia, orthostatic dysfunction, and syncope. Only the last three may involve the autonomic nervous system. Which, by the way, is the main reason for augmenting vestibular testing with autonomic testing in geriatrics, where there is rarely a single cause for dizziness. Ultimately, all three non-vestibular causes of dizziness involve marginal or poor perfusion of the brain due to decreased of insufficient blood flow to the brain. It has been our experience that a significant number of people (about 40 % of those reporting dizziness or lightheadedness) are simply dehydrated. Dehydration is most often due to a lack of proper daily hydration; too many sugary (including sugar substitutes), caffeinated, or alcoholic drinks; or excessive use of diuretics. Preclinical or subclinical orthostatic dysfunction, and perhaps preclinical syncope, may not yet actually involve dizziness or lightheadedness. Rather, due to marginal brain perfusion, it often involves afternoon fatigue, headache, reduced cognitive function, and evening edema. These may also be signs of insufficient volume or in appropriate volume distribution. The autonomics are not the only reason for dizziness. Vascular function (“lazy” walls or damaged valves in the veins) and cardiac function (damaged valves, holes in walls, or carotid or renal artery stenoses) may also be involved. If autonomic responses to head-up postural change are normal or autonomic therapy, after at least 3 months, is not sufficient, additional testing may be indicated to also treat the end organ(s).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Vinik A, Ziegler D. Diabetic cardiovascular autonomic neuropathy. Circulation. 2007;115:387–97.

    Article  PubMed  Google Scholar 

  2. Post RE, Dickerson LM. Dizziness: a diagnostic approach. Am Fam Physician. 2010;82(4):361–8. 369.

    PubMed  Google Scholar 

  3. Nanavati SH, Bulgarelli RJ, Vazquez-Tanus J, Ghosh-Dastidar S, Colombo J, Arora RR. Altered autonomic activity with atrial fibrillation as demonstrated by non-invasive autonomic monitoring. US Cardiol. 2010;7(1):47–50.

    Google Scholar 

  4. Low PA. Clinical autonomic disorders: evaluation and management. Philadelphia: Lippincott-Raven; 1997.

    Google Scholar 

  5. Arora RR, Bulgarelli RJ, Ghosh-Dastidar S, Colombo J. Autonomic mechanisms and therapeutic implications of postural diabetic cardiovascular abnormalities. J Diabetes Sci Technol. 2008;2(4):568–71.

    Article  Google Scholar 

  6. Tobias H, Vinitsky A, Bulgarelli RJ, Ghosh-Dastidar S, Colombo J. Autonomic nervous system monitoring of patients with excess parasympathetic responses to sympathetic challenges – clinical observations. US Neurol. 2010;5(2):62–6.

    Google Scholar 

  7. Bloomfield DM, Kaufman ES, Bigger Jr JT, Fleiss J, Rolnitzky L, Steinman R. Passive head-up tilt and actively standing up produce similar overall changes in autonomic balance. Am Heart J. 1997;134(2 Pt 1):316–20.

    Article  CAS  PubMed  Google Scholar 

  8. Stoupakis G, Colombo J, Rendas-Baum R, Budhwani N, Arora R. Postural drop of low frequency component of heart rate variability in diagnosis of orthostasis. Presented at scientific sessions of the American Heart Association, Chicago; 2002.

    Google Scholar 

  9. Adiraju RK, Arora RR, Colombo J. Sympathetic withdrawal may cause orthostasis: I. Possible physiology. Dallas: American Heart Association Scientific Sessions; 2005.

    Google Scholar 

  10. Adiraju RK, Arora RR, Colombo J. Sympathetic withdrawal may cause orthostasis: II. Possible remedy. Dallas: American Heart Association Scientific Sessions; 2005.

    Google Scholar 

  11. Arora RR, Aysin E, Aysin B, Colombo J. Therapeutic implications of sympathetic stimulus in orthostatic patients: measured by spectral domain analysis. Orlando: AHA Scientific Sessions; 2007.

    Google Scholar 

  12. Arora RR, Colombo J. Orthostatic syndromes are associated by sympathetic withdrawal as demonstrated by non-invasive autonomic monitoring. American Autonomic Society, 17th international symposium, Kauai, 29 Oct–1 Nov 2008.

    Google Scholar 

  13. Colombo J, Jacot J, Aysin E, Aysin B, Iffrig K, Vinik AI. Symptoms of orthostasis may be due to sympathetic/parasympathetic autonomic imbalance and can be evaluated by hrv with respiratory analysis with appropriate pathogenesis oriented therapeutic choices. International symposium on Diabetes Neuropathy, 7th annual congress, Cape Town, 29 Nov–2 Dec 2007.

    Google Scholar 

  14. Low PA, Engstrom JW. Disorders of the autonomic nervous system. In: Harrison’s principles of internal medicine. 16th ed. New York, McGraw-Hill; 2003.

    Google Scholar 

  15. Peles E, Goldstein DS, Akselrod S, Nitzan H, Azaria M, Almog S, Dolphin D, Halkin H, Modan M. Interrelationships among measures of autonomic activity and cardiovascular risk factors during orthostasis and the oral glucose tolerance test. Clin Auton Res. 1995;5(5):271–8.

    Article  CAS  PubMed  Google Scholar 

  16. Maser RE, Lenhard MJ. Review: cardiovascular autonomic neuropathy due to diabetes mellitus: clinical manifestations, consequences, and treatment. J Clin Endocrinol Metab. 2005;90:5896–903.

    Article  CAS  PubMed  Google Scholar 

  17. Vinik AI, Maser RE, Nakave AA. Diabetic cardiovascular autonomic nerve dysfunction. US Endocr Dis. 2007;2:2–9.

    Google Scholar 

  18. Joint Editorial Statement by the American Diabetes Association, the National Heart, Lung, and Blood Institute, the Juvenile Diabetes Foundation International, the National Institute of Diabetes and Digestive and Kidney Diseases, the American Heart Association. Diabetes mellitus: a major risk factor for cardiovascular disease. Circulation. 1999;100:1132–3.

    Article  Google Scholar 

  19. Grundy SM, Benjamin IJ, Burke GL, Chait A. AHA scientific statement: diabetes and cardiovascular disease, a statement for healthcare professionals from the American Heart Association. Circulation. 1999;100:1134–46.

    Article  CAS  PubMed  Google Scholar 

  20. Boulton AJM, Vinik AI, Arrezzo JC, Bril V, Feldman EI, Freeman R, Malik RA, Maser RE, Sosenko JM, Ziegler D. Diabetic neuropathies: a statement by the American Diabetes Association. Diabetes Care. 2005;28(4):956–62.

    Article  PubMed  Google Scholar 

  21. Vinik AI, Murray GL. Autonomic neuropathy is treatable. US Endocrinol. 2008;2:82–4.

    Google Scholar 

  22. Goldstein DS, Brentzel S, Holmes C, Eldadah B, Sharabi Y. Association between supine hypertension and orthostatic hypotension in chronic autonomic failure. Am J Hyperten. 2003;16(5):508.

    Google Scholar 

  23. Goldstein DS, Pechnik S, Holmes C, Eldadah B, Sharabi Y. Association between supine hypertension and orthostatic hypotension in autonomic failure. Hypertension. 2003;42:136–42.

    Article  CAS  PubMed  Google Scholar 

  24. Malik M, editor. Clinical guide to cardiac autonomic tests. Dordrecht: Kluwer Academic Publishers; 1998.

    Google Scholar 

  25. Maule S, Catalfamo E, Del Colle S. Cardiovascular autonomic function in 422 patients with orthostatic symptoms. Am J Hypertens. 2003;16:505.

    Google Scholar 

  26. Malik M, Camm AJ. Heart rate variability. Armonk: Futura Press; 1995.

    Google Scholar 

  27. Malik M. The Task Force of the European Society of Cardiology and the North American Society of Pacing and Electrophysiology. Heart rate variability, standards of measurement, physiological interpretation, and clinical use. Circulation. 1996;93:1043–65.

    Article  Google Scholar 

  28. Malik M, Task Force of the European Society of Cardiology, the North American Society of Pacing and Electrophysiology. Heart rate variability, standards of measurement, physiological interpretation, and clinical use. Eur Heart J. 1996;17:354–81.

    Article  Google Scholar 

  29. Freeman R. Treatment of orthostatic hypotension. Sem Neurol. 2003;23:435–42.

    Article  Google Scholar 

  30. Vinik AI, Erbas T. Recognizing and treating diabetic autonomic neuropathy. Cleve Clinic J Med. 2001;68(11):928–44.

    Article  CAS  Google Scholar 

  31. Mukai S, Lipsitz LA. Orthostatic hypotension. Clin Geriatr Med. 2002;18(2):253–68.

    Article  PubMed  Google Scholar 

  32. Lagi A, Spini S. Clinostatic hypertension and orthostatic hypotension. Clin Cardiol. 2010;33(6):E10–5.

    Article  PubMed  Google Scholar 

  33. Fan XH, Wang Y, Sun K, Zhang W, Wang H, Wu H, Zhang H, Zhou X, Hui R. Disorders of orthostatic blood pressure response are associated with cardiovascular disease and target organ damage in hypertensive patients. Am J Hypertens. 2010;23(8):829–37. Epub 2010 Apr 22.

    Article  PubMed  Google Scholar 

  34. Potocka-Plazak K, Plazak W. Orthostatic hypotension in elderly women with congestive heart failure. Aging (Milano). 2001;13(5):378–84.

    CAS  Google Scholar 

  35. Goldstein DS. Cardiac ectopy in chronic autonomic failure. Clin Auton Res. 2010;20(2):85–92. Epub 2009 Dec 11.

    Article  PubMed  Google Scholar 

  36. Low PA, the Therapeutics and Technology Assessment Subcommittee. Assessment: clinical autonomic testing report of the Therapeutics and Technology Assessment Subcommittee of the American Academy of Neurology. Neurology. 1996;46:873–80.

    Google Scholar 

  37. Goldstein DS, Holmes CS, Dendi R, Bruce SR, Li ST. Orthostatic hypotension from sympathetic denervation in Parkinson’s disease. Neurology. 2002;58(8):1247–55.

    Article  CAS  PubMed  Google Scholar 

  38. Tipre DN, Goldstein DS. Cardiac and extracardiac sympathetic denervation in Parkinson’s disease with orthostatic hypotension and in pure autonomic failure. J Nucl Med. 2005;46(11):1775–81.

    CAS  PubMed  Google Scholar 

  39. Wüllner U, Schmitz-Hübsch T, Antony G, Fimmers R, Spottke A, Oertel WH, Deuschl G, Klockgether T, Eggert K. KNP e.V. Autonomic dysfunction in 3414 Parkinson’s disease patients enrolled in the German Network on Parkinson’s disease (KNP e.V.): the effect of ageing. Eur J Neurol. 2007;14(12):1405–8. Epub 2007 Oct 17.

    Article  PubMed  Google Scholar 

  40. Merkelbach S, Haensch CA, Hemmer B, Koehler J, König NH, Ziemssen T. Multiple sclerosis and the autonomic nervous system. J Neurol. 2006;253 Suppl 1:I21–5.

    Article  PubMed  Google Scholar 

  41. Kanjwal K, Karabin B, Kanjwal Y, Grubb BP. Autonomic dysfunction presenting as postural orthostatic tachycardia syndrome in patients with multiple sclerosis. Int J Med Sci. 2010;7:62–7.

    Article  PubMed Central  PubMed  Google Scholar 

  42. Vinik AI, Aysin B, Colombo J. Enhanced frequency domain analysis replaces older heart rate variability methods. Fourth annual Diabetes Technology meeting, Philadelphia, 28–30 Oct 2004.

    Google Scholar 

  43. Vinik AI, Aysin B, Colombo J. Enhanced frequency domain analysis identifies early autonomic dysfunction that may lead to elevated blood pressure in diabetics. Diabetes Technology conference, San Francisco, 10–12 Nov 2005.

    Google Scholar 

  44. Sandroni P, Opfer-Gehrking TL, Singer W, Low PA. Pyridostigmine for treatment of neurogenic orthostatic hypotension: a follow up survey study. Clin Autonom Res. 2005;15:51–3.

    Article  Google Scholar 

  45. Young TM, Mathias CJ. The effects of water ingestion on orthostatic hypotension in two groups of chronic autonomic failure: multiple system atrophy and pure autonomic failure. J Neurol Neurosurg Psychiatry. 2004;75:1737–41.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  46. Gibbons CH, Freeman R. Treatment options for autonomic neuropathies. Curr Treat Options Neurol. 2006;8(2):119–32.

    Article  PubMed  Google Scholar 

  47. Bradley JG, Davis KA. Orthostatic hypotension. Am Fam Phys. 2003;68(12):2393–9.

    Google Scholar 

  48. Aysin B, Aysin E. Effect of respiration in heart rate variability (HRV) analysis. Conf Proc IEEE Eng Med Biol Soc. 2006;1:1776–9. PubMed: 17946068.

    Article  PubMed  Google Scholar 

  49. Aysin B, Aysin E, Colombo J. Comparison of HRV analysis methods during orthostatic challenge: HRV with respiration or without? IEEE Engineering in Medicine and Biology conference. Lyons; 2007.

    Google Scholar 

  50. Spadick DH, Lance VQ. Comparative orthostatic responses: standing vs. head-up tilt. Aviat Space Environ Med. 1977;48:432–3.

    Google Scholar 

  51. Hyatt KH, Jacobson LB, Schneider VS. Comparison of 70° tilt, LBNP, and passive standing as measures of orthostatic tolerance. Aviat Space Environ Med. 1975;46:801–8.

    CAS  PubMed  Google Scholar 

  52. Borst C, Wiehng W, Van Brederode JF, Hand A, De Rijk LG, Dunning AJ. Mechanisms of initial heart rate response to posture change. Am J Physiol. 1982;243:H676–81.

    CAS  PubMed  Google Scholar 

  53. Ewing DJ, Hume L, Campbell IW, Murray A, Neilson JMM, CJarke BF. Autonomic mechanisms in the initial heart rate response to standing. J Appl Physiol. 1980;49:809–14.

    CAS  PubMed  Google Scholar 

  54. Borst C, Van Brederode JFM, Wiehng W, Van Monfrans GA, Dunning AJ. Mechanism of the initial blood pressure response to postural change. Clin Sci. 1984;67:321–7.

    CAS  PubMed  Google Scholar 

  55. Silveira DC, Sobol M, Rosenberg ML. ANSAR autonomic function test and the standard tilt table test: a retrospective study in patients with possible orthostatic symptoms. New Jersey Neuroscience Institute and Seton Hall University symposium. Edison; 2006.

    Google Scholar 

  56. Poon IO, Braun U. High prevalence of orthostatic hypotension and its correlation with potentially causative medications among elderly veterans. J Clin Pharm Ther. 2005;30(2):173–8.

    Article  CAS  PubMed  Google Scholar 

  57. Grubb BP, Kosinski DJ, Boehm K, Kip K. The postural orthostatic tachycardia: a neurocardiogenic variant identified during head-up tilt-table testing. Pacing Clin Electrophysiol. 1997;20(pt 1):2205–12.

    Article  CAS  PubMed  Google Scholar 

  58. Eckberg DL. Sympathovagal balance. A critical appraisal. Circulation. 1997;96(9):3224–32.

    Article  CAS  PubMed  Google Scholar 

  59. Alcalay M, Izraeli S, Wallach R, et al. Paradoxical pharmacodynamic effect of atropine on parasympathetic control: study by spectral analysis of heart rate fluctuations. Clin Pharmacol Ther. 1992;52:518–27.

    Article  CAS  PubMed  Google Scholar 

  60. Eckberg DL. Physiological basis for human autonomic rhythms. Ann Med. 2000;32:341–9.

    Article  CAS  PubMed  Google Scholar 

  61. Freeman R. Assessment of cardiovascular autonomic function. Clin Neurophysiol. 2006;117(4):716–30.

    Article  PubMed  Google Scholar 

  62. Cammann H, Michel L. How to avoid misinterpretation of heart rate variability power spectra? Comput Methods Prog Biomed. 2002;1:15–23.

    Article  Google Scholar 

  63. Badra LJ, Cooke WH, Hoag JB, Crossman AA, Kuusela TA, Tahvanainen KU, Eckberg DL. Respiratory modulation of human autonomic rhythms. Am J Physiol Heart Circ Physiol. 2001;280(6):H2674–88.

    CAS  PubMed  Google Scholar 

  64. Brown TE, Beightol LA, Koh J, Eckberg DL. Important influence of respiration on human R-R interval power spectra is largely ignored. J Appl Physiol. 1993;75(5):2310–7.

    CAS  PubMed  Google Scholar 

  65. Saul JP, Cohen RJ. Chapter 30. Respiratory sinus arrhythmia, vagal control of the heart rate: experimental basis and clinical implications. In: Levy MN, Schwartz PJ, editors. Heart rate variability. Armonk: Futura Publishing Co.; 1995.

    Google Scholar 

  66. Novak V, Novak P, De Champlain J, Le Blanc AR, Martin R, Nadeau R. Influence of respiration on heart rate and blood pressure fluctuations. J Appl Physiol. 1993;74(2):617–26.

    CAS  PubMed  Google Scholar 

  67. Saul JP, Berger RD, Albrecht P, Stein SP, Chen MH, Cohen RJ. Transfer function analysis of the circulation: unique insights into cardiovascular regulation. Am J Physiol. 1991;261(4 pt 2):H1231–45.

    CAS  PubMed  Google Scholar 

  68. Pinna GD, Maestri R, La Rovere MT, Gobbi E, Fanfulla F. Effect of paced breathing on ventilatory and cardiovascular variability parameters during short-term investigations of autonomic function. Am J Physiol Heart Circ Physiol. 2006;290(1):H424–33.

    Article  CAS  PubMed  Google Scholar 

  69. Grossman P, Taylor EW. Toward understanding respiratory sinus arrhythmia: relations to cardia vagal tone, evolution and biobehavioral functions. Biol Psychol. 2007;74:263–85.

    Article  PubMed  Google Scholar 

  70. Sanderson JE, Yeung LY, Yeung DT, Kay RL, Tomlinson B, Critchley JA, Woo KS, Bernardi L. Impact of changes in respiratory frequency and posture on power spectral analysis of heart rate and systolic blood pressure variability in normal subjects and patients with heart failure. Clin Sci (Lond). 1996;91(1):35–43.

    CAS  Google Scholar 

  71. Patwardhan AR, Vallurupalli S, Evans JM, Bruce EN, Knapp CF. Override of spontaneous respiratory pattern generator reduces cardiovascular parasympathetic influence. J Appl Physiol. 1995;79(3):1048–54.

    CAS  PubMed  Google Scholar 

  72. Patwardhan AR, Evans JM, Bruce EN, Eckberg DL, Knapp CF. Voluntary control of breathing does not alter vagal modulation of heart rate. J Appl Physiol. 1995;78(6):2087–94.

    CAS  PubMed  Google Scholar 

  73. Parati G, Valentini M. Prognostic relevance of blood pressure variability. Hypertension. 2006;47(2):137–8.

    Article  CAS  PubMed  Google Scholar 

  74. Parati G, Mancia G. Blood pressure variability as a risk factor. Blood Press Monit. 2001;6(6):341–7.

    Article  CAS  PubMed  Google Scholar 

  75. Parati G, Saul JP, Di Rienzo M, Mancia G. Spectral analysis of blood pressure and heart rate variability in evaluating cardiovascular regulation. A critical appraisal. Hypertension. 1995;25(6):1276–86.

    Article  CAS  PubMed  Google Scholar 

  76. Parati G, Bilo G, Vettorello M, Groppelli A, Maronati A, Tortorici E, Caldara G, Mancia G. Assessment of overall blood pressure variability and its different components. Blood Press Monit. 2003;8(4):155–9.

    Article  PubMed  Google Scholar 

  77. Bilo G, Giglio A, Styczkiewicz K, Caldara G, Kawecka-Jaszcz K, Mancia G, Parati G. How to improve the assessment of 24-h blood pressure variability. Blood Press Monit. 2005;10(6):321–3.

    Article  PubMed  Google Scholar 

  78. Parati G, Rizzoni D. Assessing the prognostic relevance of blood pressure variability: discrepant information from different indices. J Hypertens. 2005;23(3):483–6.

    Article  CAS  PubMed  Google Scholar 

  79. Parati G, Di Rienzo M. Determinants of heart rate and heart rate variability. J Hypertens. 2003;21(3):477–80.

    Article  CAS  PubMed  Google Scholar 

  80. Parati G, Frattola A, Di Rienzo M, Mancia G. Blood pressure variability. Importance in research and in clinical hypertension. Arq Bras Cardiol. 1996;67(2):131–3.

    CAS  PubMed  Google Scholar 

  81. Carney RM, Blumenthal JA, Freedland KE, Stein PK, Howells WB, Berkman LF, Watkins LL, Czajkowski SM, Hayano J, Domitrovich PP, Jaffe AS. Low heart rate variability and the effect of depression on post–myocardial infarction mortality. Arch Intern Med. 2005;165:1486–91.

    Article  PubMed  Google Scholar 

  82. Barefoot JC, Helms MJ, Mark DB, Blumenthal JA, Califf RM, Haney TL, O’Connor CM, Siegler IC, Williams RB. Depression and long-term mortality risk in patients with coronary artery disease. Am J Cardiol. 1996;78:613–7.

    Article  CAS  PubMed  Google Scholar 

  83. Davidson KW, Rieckmann N, Lesperance F. Psychological theories of depression: potential application for the prevention of acute coronary syndrome recurrence. Psychosom Med. 2004;66:165–73.

    Article  PubMed  Google Scholar 

  84. Lett HS, Blumenthal JA, Babyak MA, Sherwood A, Strauman T, Robins C, Newman MF. Depression as a risk factor for coronary artery disease: evidence, mechanisms, and treatment. Psychosom Med. 2004;66:305–15.

    PubMed  Google Scholar 

  85. Frasure-Smith N, Lesperance F, Gravel G, Masson A, Juneau M, Talajic M, Bourassa MG. Social support, depression, and mortality during the first year after myocardial infarction. Circulation. 2000;101:1919–24.

    Article  CAS  PubMed  Google Scholar 

  86. Lespérance F, Frasure-Smith N, Juneau M, Théroux P. Depression and 1-year prognosis in unstable angina. Arch Intern Med. 2000;160(9):1354–60.

    Article  PubMed  Google Scholar 

  87. Gavard JA, Lustman PJ, Clouse RE. Prevalence of depression in adults with diabetes. An epidemiological evaluation. Diabetes Care. 1993;16:1167–78.

    Article  CAS  PubMed  Google Scholar 

  88. Joynt KE, Whellan DJ, O’Connor CM. Depression and cardiovascular disease: mechanisms of interaction. Biol Psychiatry. 2003;54:248–61.

    Article  PubMed  Google Scholar 

  89. Nanavati S, Bulgarelli RJ, Vazquez-Tanus J, Ghosh-Dastidar S, Colombo J, Arora RR. Altered autonomic activity with atrial fibrillation as demonstrated by non-invasive autonomic monitoring. American Autonomic Society, 17th international symposium. Kauai; 29 Oct–1 Nov 2008.

    Google Scholar 

  90. Arora RR, Ghosh Dastidar S, Colombo J. Autonomic balance is associated with decreased morbidity. American Autonomic Society, 17th international symposium, Kauai; 29 Oct–1 Nov 2008.

    Google Scholar 

  91. Baharav A, Mimouni M, Lehrman-Sagie T, Izraeli S, Akselrod S. Spectral analysis of heart rate in vasovagal syncope: the autonomic nervous system in vasovagal syncope. Clin Auton Res. 1993;3(4):261–9.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Colombo, J., Arora, R., DePace, N.L., Vinik, A.I. (2015). Dizziness. In: Clinical Autonomic Dysfunction. Springer, Cham. https://doi.org/10.1007/978-3-319-07371-2_23

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-07371-2_23

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-07370-5

  • Online ISBN: 978-3-319-07371-2

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics