Gender Recognition Using Fusion of Spatial and Temporal Features

  • Suparna BiswasEmail author
  • Jaya Sil
Part of the Smart Innovation, Systems and Technologies book series (SIST, volume 27)


In the paper, a gender recognition scheme has been proposed based on fusion of spatial and temporal features. As a first step, face from the image is detected using Viola Jones method and then spatial and temporal features are extracted from the detected face images. Spatial features are obtained using Principal Component Analysis (PCA) while Discrete Wavelet Transform (DWT) has been applied to extract temporal features. In this paper we investigate the fusion of both spatial and temporal features for gender classification. The feature vectors of test images are obtained and classified as male or female by Weka tool using 10 fold cross validation technique. To evaluate the proposed scheme FERET database has been used providing accuracy better than the individual features. Experimental result shows 9.77% accuracy improvement with respect to spatial domain recognition system.


Feature extraction Gender classification Discrete wavelet transform Principal component analysis 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Vending machines recommend based on face recognition. Biometric Technology Today 2011(1) (2011)Google Scholar
  2. 2.
    Ylioinas, J., Hadid, A., Pietikäinen, M.: Combining contrast information and local binary patterns for gender classification. Image Analysis, 676–686 (2011)Google Scholar
  3. 3.
    Shan, C.: Learning local binary patterns for gender classification on real-world face images. Pattern Recognition Letters 33(4), 431–437 (2012)CrossRefGoogle Scholar
  4. 4.
    Wu, T.-X., Lian, X.-C., Lu, B.-L.: Multi-view gender classification using symmetry of facial images. Neural Computing and Applications, 1–9 (2011)Google Scholar
  5. 5.
    Wang, J.G., Li, J., Lee, C.Y., Yau, W.Y.: Dense SIFT and Gabor descriptors-based face representation with applications to gender recognition. In: 2010 11th International Conference on Control Automation Robotics & Vision (ICARCV), pp. 1860–1864 (2010)Google Scholar
  6. 6.
    Lee, P.H., Hung, J.Y., Hung, Y.P.: Automatic Gender Recognition Using Fusion of Facial Strips. In: 20th International Conference on Pattern Recognition (ICPR), pp. 1140–1143 (2010)Google Scholar
  7. 7.
    Rai, P., Khanna, P.: Gender classification using Radon and Wavelet Transforms. In: International Conference on Industrial and Information Systems, pp. 448–451 (2010)Google Scholar
  8. 8.
    Shiqi, Y., Tieniu, T., Kaiqi, H., Kui, J., Xinyu, W.: A Study on Gait- Based Gender Classification. IEEE Transactions Image Processing 18, 1905–1910 (2009)CrossRefGoogle Scholar
  9. 9.
    Hu, M., Wang, Y., Zhang, Z., Wang, Y.: Combining Spatial and Temporal Information for Gait Based Gender Classification. In: 20th International Conference on Pattern Recognition, pp. 3679–3682 (2010)Google Scholar
  10. 10.
    Chang, P.-C., Tien, M.-C., Wu, J.-L., Hu, C.-S.: Real-time Gender Classification from Human Gait for Arbitrary View Angles. In: 2009 11th IEEE International Symposium on Multimedia, pp. 88–95 (2009)Google Scholar
  11. 11.
    Chang, C.Y., Wu, T.H.: Using gait information for gender recognition. In: 10th International Conference on Intelligent Systems Design and Applications, pp. 1388–1393 (2010)Google Scholar
  12. 12.
    Amayeh, G., Bebis, G., Nicolescu, M.: Gender classification from hand shape. In: Proc. IEEE Conference on Computer Vision and PatternGoogle Scholar
  13. 13.
    Jain, A.K., Ross, A., Prabhakar, S.: An Introduction to Biometric Recognition. IEEE Transactions on Circuits and Systems 14(1), 4–20 (2004)Google Scholar
  14. 14.
    Sun, Z., Bebis, G., Yuan, X., Louis, S.J.: Genetic feature subset selection for gender classification: A comparison study. In: Proceedings of IEEE Workshop on Applications of Computer Vision, pp. 165–170 (2002)Google Scholar
  15. 15.
    Wu, T.-X., Lian, X.-C., Lu, B.-L.: Multi View gender classification using symmetry of facial image. In: ICONIP (2010)Google Scholar
  16. 16.
    Huang, J., Shao, X., Wechsler, H.: Face pose discrimination using support vector machines (svm). In: Proceedings of 14th International Conference on Pattern Recognition, ICPR 1998 (1998)Google Scholar
  17. 17.
    Raisamo, M.E.: Evaluation of gender classification methods with automatically detected and aligned faces. IEEE Trans. Pattern Analysis and Machine Intelligence 30(3), 541–547 (2008)CrossRefGoogle Scholar
  18. 18.
    Somayeh, B., Mousavi, H.A.: Gender classification using neuro fuzzy system. Indian Journal of Science and Technology 4(10) (2011)Google Scholar
  19. 19.
    Basha, A.F., Shaira, G., Jahangeer, B.: Face gender image classification using various wavelet transform and support vector machine with various Kernels. IJCSI International Journal of Computer Science Issues 9(6), 2 (2012)Google Scholar
  20. 20.
    Ullah, I., Hussain, M., Aboalsamh, H., Muhammad, G., Mirza, A.M., Bebis, G.: Gender Recognition from Face Images with Dyadic Wavelet Transform and Local Binary Pattern. In: Bebis, G., Boyle, R., Parvin, B., Koracin, D., Fowlkes, C., Wang, S., Choi, M.-H., Mantler, S., Schulze, J., Acevedo, D., Mueller, K., Papka, M. (eds.) ISVC 2012, Part II. LNCS, vol. 7432, pp. 409–419. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  21. 21.
    Viola, P., Jones, M.: Rapid object detection using a boosted cascade of simple features. In: CVPR (2001)Google Scholar
  22. 22.
  23. 23.
    Leng, X.M., Wang, Y.: Improving Generalization For Gender Classification. In: ICIP (2008)Google Scholar
  24. 24.
    Makinen, E., Raisamo, R.: Evaluation of Gender Classification Methods with Automatically Detected and Aligned Faces. IEEE Transactions on PAMI 30(3) (2008)Google Scholar
  25. 25.
    Akbari, R., Mozaffari, S.: Performance Enhancement of PCA-based Face Recognition System via Gender Classification Method. In: MVIP (2010)Google Scholar
  26. 26.
    Xu, Z., Lu, L., Shi, P.F.: A hybrid approach to gender classification from face images. In: ICPR, pp. 1–4 (2008)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  1. 1.Department of Electronics & communication EngineeringGurunanak Institute of TechnologyKolkataIndia
  2. 2.Department of Computer Science and TechnologyBengal Engineering & Science UniversitykolkattaIndia

Personalised recommendations