Skip to main content

Implementation of Symmetric Functions Using Quantum Dot Cellular Automata

  • Conference paper
Advanced Computing, Networking and Informatics- Volume 2

Part of the book series: Smart Innovation, Systems and Technologies ((SIST,volume 28))

Abstract

VLSI technology has made possible the integration of massive number of components into a single chip with the minimum power dissipation. But concerned by the wall that Moore’s law is expected to hit in the next decade, the integrated circuit community is turning to emerging nano-technologies for continued device improvements. Quantum dot cellular automata(QCA) is a technology which has the potential of faster speed, smaller size and minimum power consumption compared to transistor –based technology. In quantum dot cellular automata, the basic elements are simple cells. Each quantum cell contains two electrons which interact via Coulomb forces with neighboring cells. The charge distribution in each cell tends to align along one of two perpendicular axes, which allows the encoding of binary information using the state of the cell. These cells are used as building blocks to construct gates and wires. This paper utilizes these unique features of QCA to simulate symmetric functions. A general equation for the minimum number of gates required to an arbitrary number of input variables causing synthesis of symmetric function is achieved. Finally a general expression for the number of gates in benchmark circuits is also deduced. It provides significant reduction in hardware cost and switching delay compared to other existing techniques.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. JaJa, Wu, S.M.: A new approach to realize partially symmetric functions. Tech. Rep. SRCTR86-54, Dept. EE, University of Maryland (1986)

    Google Scholar 

  2. Lent, C.S., Taugaw, P.D., Porod, W., Berstein, G.H.: Quantum Cellular Automata. Nanotechnology 4(1), 49–57 (1993)

    Article  Google Scholar 

  3. Picton, P.: Modified Fredkin gates in logic design. Microelectronics Journal 25, 437–441 (1994)

    Article  Google Scholar 

  4. Orlov, A.O., Amlani, I., Bernstein, G.H., Lent, C.S., Sinder, G.L.: Realization of a Functional Cell for Quantum Dot Cellular Automata. Science 277(5328), 928–930 (1997)

    Article  Google Scholar 

  5. Lent, C.S., Taugaw, P.D.: A Device Architecture for Computing with Quantum Dots. Proceedings IEEE 85(4), 541–557 (1997)

    Article  Google Scholar 

  6. Amlani, I., Orlov, A.O., Toth, G., Lent, C.S., Bernstein, G.H., Sinder, G.L.: Digital Logic Gate using Quantum Dot Cellular Automata. Science 284(5412), 289–291 (1999)

    Article  Google Scholar 

  7. Yanushekvich, S.N., Butler, J.T., Dueck, G.W., Shmerko, V.P.: Experiments on FPRM expressions for partially symmetric functions. In: Proc. of the 30th IEEE International Symposium on Multiple Valued logic, pp. 141–146 (2000)

    Google Scholar 

  8. Perkowski, M., Kerntopf, P., Buller, A., Chrzanowska Jeske, M., Mishchenko, A., Song, X., AlRabadi, A., Jo Zwiak, L., Coppola, A., Massey, B.: Regularity and symmetry as a base for efficient realization of reversible logic circuits. In: IWLS, pp. 245–252 (2001)

    Google Scholar 

  9. Perkowski, M., Kerntopf, P., Buller, A., ChrzanowskaJeske, M., Mishchenko, A., Song, X., AlRabadi, A., Jo Zwiak, L., Coppola, A., Massey, B.: Regular realization of symmetric functions using reversible logic. In: EUROMICRO Symp. on Digital Systems Design, pp. 245–252 (2001)

    Google Scholar 

  10. Lieberman, M., Chellamma, S., Varughese, B., Wang, Y., Lent, C.S., Bernstein, G.H., Snider, G.L., Peiris, F.: Quantum Dot Cellular Automata at a Molecular Scale. Annals of the New York Academy of Sciences 960, 225–239 (2002)

    Article  Google Scholar 

  11. Zhang, R., Walus, K., Wang, W., Jullien, G.A.: A Method of Majority Logic Reduction for Quantum Cellular Automata. IEEE Trans. on Nanotechnology 3(4), 443–450 (2004)

    Article  Google Scholar 

  12. Walus, K., Schulhof, G., Jullien, G.A., Zhang, R., Wang, W.: Circuit Design Based on Majority Gates for Application with Quantum Dot Cellular Automata. IEEE Trans. Signals, Systems and Computers 2, 1354–1357 (2004)

    Google Scholar 

  13. Rahaman, H., Das, D.K., Bhattacharya, B.B.: Implementing Symmetric Functions with Hierarchical Modules for Stuck-At and Path-Delay Fault Testability. Journal of Electronic Testing 22(2), 125–142 (2006)

    Article  Google Scholar 

  14. Momenzadeh, M., Tahoori, M.B., Huang, J., Lombardi, F.: Characterization, Test and Logic Synthesis of AND-ORINVERTER (AOI) Gate Design for QCA Implementation. IEEE Trans. on Computer Aided Design of Integrated Circuits and Systems 24, 1881–1893 (2005)

    Article  Google Scholar 

  15. Townsend, W.J., Abraham, J.A.: Complex Gate Implementations for Quantum Dot Cellular Automata. In: 4th IEEE Conference on Nanotechnology, pp. 625–627 (2004)

    Google Scholar 

  16. Rahaman, H., Sikdar, B.K., Das, D.K.: Synthesis of Symmetric Boolean Functions Using Quantum Cellular Automata. In: International Conference on Design & Test of Integrated Systems in Nanoscale Technology (DTIS 2006), Tunis, Tunisia, pp. 119–124 (2006)

    Google Scholar 

  17. Xu, Z.Y., Fenga, M.W., Zhang, M.: Universal Quantum Computation With Quantum-Dot Cellular Automata in Decoherence-Free Subspace. Quantum Information and Computation (2008)

    Google Scholar 

  18. Azghadi, M.R., Kavehei, O., Navi, K.: A Novel Design for Quantum-dot Cellular Automata Cells and Full Adders

    Google Scholar 

  19. Maslov, D.: Efficient reversible and quantum implementations of symmetric Boolean functions. Circuits, Devices and Systems, IEEE Proc. 153(5), 467–472 (2006)

    Article  Google Scholar 

  20. Cho, H.: Adder Designs and Analyses for Quantum-Dot Cellular Automata. IEEE Transactions on Nanotechnology 6(3) (2007)

    Google Scholar 

  21. Keren, O., Levin, I., Stankovic, S.R.: Use of gray decoding for implementation of symmetric functions. In: International Conference on VLSI, pp. 25–30 (2007)

    Google Scholar 

  22. Lauradoux, C., Videau, M.: Matriochka symmetric Boolean functions. In: IEEE ISIT, pp. 1631–1635 (2008)

    Google Scholar 

  23. Géza, T., Lent, C.S.: Quantum computing with quantum-dot cellular automata. Physical Review A 63, 052315

    Google Scholar 

  24. Bhattacharjee, P.K.: Use of Symmetric Functions Designed by QCA Gates for Next Generation IC. International Journal of Computer Theory and Engineering 2, 1793–8201 (2010)

    Google Scholar 

  25. Jagarlamudi, H.S., Saha, M., Jagarlamudi, P.K.: Quantum Dot Cellular Automata Based Effective Design of Combinational and Sequential Logical Structures. World Academy of Science, Engineering and Technology 60 (2011)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Subhashree Basu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this paper

Cite this paper

Basu, S., Das, D.K., Bhattacharjee, S. (2014). Implementation of Symmetric Functions Using Quantum Dot Cellular Automata. In: Kumar Kundu, M., Mohapatra, D., Konar, A., Chakraborty, A. (eds) Advanced Computing, Networking and Informatics- Volume 2. Smart Innovation, Systems and Technologies, vol 28. Springer, Cham. https://doi.org/10.1007/978-3-319-07350-7_50

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-07350-7_50

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-07349-1

  • Online ISBN: 978-3-319-07350-7

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics