Tree Based Group Key Agreement – A Survey for Cognitive Radio Mobile Ad Hoc Networks

  • N. RenugadeviEmail author
  • C. Mala
Conference paper
Part of the Smart Innovation, Systems and Technologies book series (SIST, volume 28)


Cognitive radio networks solve the spectrum scarcity problem by dynamically utilizing the unused spectrums. To ensure secure and reliable communication, cognitive radio mobile ad hoc networks require more stringent and secure protocols due to their intrinsic nature. Tree based topology for cognitive radio network is widely used as it takes less time for join and leave operations for the users within the channel of the spectrum compared to other topologies. This paper presents a survey of tree based group key agreement schemes applicable to cognitive radio networks.


Group Key Agreement Key tree Individual and Batch rekeying Cognitive Radio Mobile Ad Hoc Networks 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Mitola, J.: Cognitive radio for flexible mobile multimedia communications. In: IEEE International Workshop on Mobile Multimedia Communications, pp. 3–10 (1999)Google Scholar
  2. 2.
    Akyildiz, I.F., Lee, W.Y., Vuran, M.C., Mohanty, S.: Next generation/dynamic spectrum access/cognitive radio wireless networks: A survey. Computer Networks Journal 50, 2127–2159 (2006)CrossRefzbMATHGoogle Scholar
  3. 3.
    Wyglinski, A.M., Nekovee, M., Hou, T.: Cognitive radio communications and networks: Principles and Practice. ElsevierAcademic Press (2009)Google Scholar
  4. 4.
    Parvin, S., Hussain, F.K., Hussain, O.K., Han, S., Tian, B., Chang, E.: Cognitive radio network security: A survey. Journal of Network and Computer Applications 35, 1691–1708 (2012)CrossRefGoogle Scholar
  5. 5.
    Diffie, W., Hellman, M.: New directions in cryptography. IEEE Transactions on Information Theory 22(6), 644–654 (1976)MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Steiner, M., Tsudik, G., Waidner, M.: Diffie-hellman key distribution extended to group communication. In: 3rd ACM conference on Computer and Communications Security, pp. 31–37. ACM Press (1996)Google Scholar
  7. 7.
    Koblitz, N.: Elliptic Curve Cryptosystems. Mathematics of Computation 48(177), 203–209 (1987)MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    Kim, Y., Perrig, A., Tsudik, G.: Simple and fault-tolerance key agreement for dynamic collaborative groups. In: 7th ACM Conference on Computer and Communications Security, pp. 235–244 (2000)Google Scholar
  9. 9.
    Kim, Y., Perrig, A., Tsudik, G.: Tree-based group key agreement. ACM Transactions on Information and System Security 7(1), 60–96 (2004)CrossRefGoogle Scholar
  10. 10.
    Kim, Y., Perrig, A., Tsudik, G.: Communication-efficient group key agreement. In: Dupuy, M., Paradinas, P. (eds.) Trusted Information. IFIP, vol. 65, pp. 229–244. Springer, Boston (2001)CrossRefGoogle Scholar
  11. 11.
    Zheng, S., Manz, D., Alves–Foss, J.: A communication-computation efficient group key algorithm for large and dynamic groups. Computer Networks 51(1), 69–93 (2007)CrossRefzbMATHGoogle Scholar
  12. 12.
    Alves-Foss, J.: An efficient secure authenticated group key exchange algorithm for large and dynamic groups. In: 23rd National Information Systems Security Conference, pp. 254–266 (2000)Google Scholar
  13. 13.
    Yu, W., Sun, Y., Liu, K.J.R.: Optimizing the rekeying cost for contributory group key agreement Schemes. IEEE Transactions on Dependable and Secure Computing 4(3), 228–242 (2007)CrossRefGoogle Scholar
  14. 14.
    Tripathi, S., Biswas, G.P.: Design of efficient ternary-tree based group key agreement protocol for dynamic groups. In: Communication Systems and Networks and Workshops (2009)Google Scholar
  15. 15.
    Liao, L., Manulis, M.: Tree-based group key agreement framework for mobile ad-hoc networks. In: 20th International Conference on Advanced Information Networking and Applications, vol. 2, pp. 5–9 (2006)Google Scholar
  16. 16.
    Manulis, M.: Contributory Group Key Agreement Protocols, Revisited for Mobile Ad-Hoc Groups. In: IEEE International Conference on Mobile Adhoc and Sensor Systems Conference (2005)Google Scholar
  17. 17.
    Chen, Y., Zhao, M., Zheng, S., Wang, Z.: An Efficient and Secure Group Key Agreement Using in the Group Communication of Mobile Ad-hoc Networks. In: International Conference on Computational Intelligence and Securit, vol. 2, pp. 1136–1142 (2006)Google Scholar
  18. 18.
    Hong, T., Liehuang, Z., Zijian, Z.: A Novel Authenticated Group Key Agreement Protocol based on Elliptic Curve Diffie-Hellman. In: 4th International Conference on Wireless Communications, Networking and Mobile Computing (2008)Google Scholar
  19. 19.
    Lin, H.Y., Chiang, T.C.: Efficient key agreements in dynamic multicast height balanced tree for secure multicast communications in ad hoc networks. EURASIP Journal on Wireless Communications and Networking (2011)Google Scholar
  20. 20.
    Dondeti, L.R., Mukherjee, S.: DISEC: A distributed framework for scalable secure many-to-many communication. In: 5th IEEE Symposium on Computers and Communications, pp. 693–698 (2000)Google Scholar
  21. 21.
    Mao, Y., Sun, Y., Wu, M., Liu, K.J.R.: Dynamic join-exit amortization and scheduling for time efficient group key agreement. In: IEEE INFOCO, vol. 4, pp. 2617–2627 (2004)Google Scholar
  22. 22.
    Mao, Y., Sun, Y., Wu, M., Liu, K.J.R.: JET: Dynamic Join-Exit-Tree Amortization and Scheduling for Contributory Key Management. IEEE/ACM Transactions on Networking 14(5), 1128–1140 (2006)CrossRefGoogle Scholar
  23. 23.
    Gu, X., Yang, J., Yu, J., Lan, J.: Join-Tree-based contributory group key management. In: 10th IEEE International Conference on High Performance Computing and Communications, pp. 564–571 (2008)Google Scholar
  24. 24.
    Gu, X., Cao, Z., Yang, J., Lan, J.: Dynamic Contributory Key Management Based On Weighted-Join-Exit-Tree. In: IEEE MILCOM (2008)Google Scholar
  25. 25.
    Lee, P.C., Lui, C.S., Yau, K.Y.: Distributed collaborative key agreement and authentication protocols for dynamic peer groups. IEEE/ACM Transactions on Networking 14(2), 263–276 (2006)CrossRefGoogle Scholar
  26. 26.
    Guo, C.J., Huang, Y.M.: Residency-based distributed collaborative key agreement for dynamic peer groups. International Journal of Innovative Computing, Information and Control 8(8), 5523–5542 (2012)MathSciNetGoogle Scholar
  27. 27.
    Zhang, J., Li, B., Chen, C.X., et al.: EDKAS: A Efficient Distributed Key Agreement Scheme using One Way Function Trees for Dynamic Collaborative Groups. In: IMACS Multiconference on Computational Engineering in Systems Applications, pp. 1215–1222 (2006)Google Scholar
  28. 28.
    Li, B., Yang, Y., Lu, Z., Yuan, B., Long, T.: Secure Distributed Batch Rekeying Algorithm for Dynamic Group. In: IEEE Conference ICCT, pp. 664–667. IEEE Press (2012)Google Scholar
  29. 29.
    El-Hajj, W., Safa, H., Guizani, M.: Survey of Security Issues in Cognitive Radio Networks. Journal of Internet Technology 12(2), 181–198 (2011)Google Scholar
  30. 30.
    León, O., Hernandez-Serrano, J., Soriano, M.: A new crosslayer attack to TCP in cognitive radio networks. In: Second International Workshop on Cross Layer Design (2009)Google Scholar
  31. 31.
    The National Security Agency (NSA)/TheCentral Security Service (CSS),

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  1. 1.Department of Computer Science and EngineeringNational Institute of TechnologyTiruchirappalliIndia

Personalised recommendations