Skip to main content

Multibody Systems

  • Chapter
  • First Online:
Applied Dynamics
  • 1910 Accesses

Abstract

A multibody system consists of rigid bodies between which act internal forces and torques that originate from massless constraint and coupling elements. In addition, other arbitrary external forces and torques can also influence the system. A mass point system is a special case of a multibody system. For example, we can represent a multibody system as a mass point system if all rotational velocities and all internal and external torques vanish with respect to the body center of mass. In comparison to a free multibody system, a free mass point system has only half the number of degrees of freedom because of the omitted rotations. In the case of a planar multibody system, one displacement coordinate and two angular coordinates are dropped as well as one force coordinate and two torque coordinates. Moreover, all bodies must move in parallel principal planes of inertia. In comparison to a free, three-dimensional multibody system, the number of degrees of freedom in a free planar multibody system is reduced by half. Similar simplifications result in gyroscopic systems or planar point systems. In order to limit the diversity of variants, we will only discuss the three-dimensional multibody system. The simplifications in the aforementioned special cases, which lead to a complete cancelation of vanishing equations, will be left to the reader, though they will to some extent be encountered in the examples.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    For further information please consult www.itm.uni-stuttgart.de/research/neweul

Bibliography

  1. Arnold R, Maunder L (1961) Gyrodynamics and its engineering applications. Academic Press, New York

    Google Scholar 

  2. Bae DS, Haug EJ (1987) A recursive formulation for constrained mechanical system dynamics: part I, open loop systems. Mech Struct Mach 15:359–382

    Article  Google Scholar 

  3. Brandl H, Johanni R, Otter M (1988) A very efficient algorithm for the simulation of robots and similar multibody systems without inversion of the mass matrix. In: Kopacek P, Troch I, Desoyer K (eds) Theory of robots. Pergamon, Oxford, pp 95–100

    Google Scholar 

  4. Bronstein IN, Semendjajew KA, Musiol G, Mühlig H (2013) Taschenbuch der Mathematik. Harri Deutsch, Frankfurt a.M.

    Google Scholar 

  5. Eberhard P (2000) Kontaktuntersuchungen durch hybride Mehrkörpersystem/Finite Elemente Simulationen. Shaker Verlag, Aachen

    Google Scholar 

  6. Eich-Soellner E, Führer C (2013) Numerical methods in multibody dynamics. Vieweg Teubner, Wiesbaden

    Google Scholar 

  7. Hollerbach JM (1980) A recursive Lagrangian formulation of manipulator dynamics and comparative study of dynamics formulation complexity. IEEE Trans Syst Man Cybern 11:730–736

    Article  MathSciNet  Google Scholar 

  8. Kreuzer E, Schiehlen W (1985) Computerized generation of symbolic equations of motion for spacecraft. J Guid Control Dyn 8(2):284–287

    Article  MATH  Google Scholar 

  9. Kurz T, Eberhard P, Henninger C, Schiehlen W (2010) From Neweul to Neweul-M2: symbolical equations of motion for multibody system analysis and synthesis. Multibody Syst Dyn 24(1):25–41

    Article  MATH  Google Scholar 

  10. Magnus K (1971) Kreisel – Theorie und Anwendungen. Springer, Berlin

    MATH  Google Scholar 

  11. Magnus K, Müller-Slany HH (2005) Grundlagen der Technischen Mechanik. Teubner, Stuttgart

    Book  Google Scholar 

  12. Nayfeh A, Mook D (2005) Nonlinear oscillations. Wiley, Hoboken

    Google Scholar 

  13. Saha SK, Schiehlen W (2001) Recursive kinematics and dynamics for parallel structural closed-loop multibody systems. Mech Struct Mach 29:143–175

    Article  Google Scholar 

  14. Schiehlen W (1991) Computational aspects in multibody system dynamics. Comput Methods Appl Mech Eng 90:569–582

    Article  Google Scholar 

  15. Schiehlen W (1997) Multibody system dynamics: roots and perspectives. Multibody Syst Dyn 1:149–188

    Article  MathSciNet  MATH  Google Scholar 

  16. Sextro W, Popp K, Magnus K (2013) Schwingungen: Eine Einführung in physikalische Grundlagen und die theoretische Behandlung von Schwingungsproblemen. Springer, Wiesbaden

    Google Scholar 

  17. Simeon B (2013) Computational flexible multibody dynamics: a differential-algebraic approach. Springer, Heidelberg

    Book  Google Scholar 

  18. Spivak M (2006) Calculus. Cambridge University Press, Cambridge

    MATH  Google Scholar 

  19. Wittenburg J (2008) Dynamics of multibody systems. Springer, Berlin

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Schiehlen, W., Eberhard, P. (2014). Multibody Systems. In: Applied Dynamics. Springer, Cham. https://doi.org/10.1007/978-3-319-07335-4_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-07335-4_5

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-07334-7

  • Online ISBN: 978-3-319-07335-4

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics