Deadlock detection in recursive programs that admit dynamic resource creation is extremely complex and solutions either give imprecise answers or do not scale.

We define an algorithm for detecting deadlocks of linear recursive programs of a basic model. The theory that underpins the algorithm is a generalization of the theory of permutations of names to so-called mutations, which transform tuples by introducing duplicates and fresh names.

Our algorithm realizes the back-end of deadlock analyzers for object-oriented programming languages, once the association programs/basic-model-programs has been defined as front-end.


Saturated State Operational Semantic Behavioral Type Dependency Pair Recursive Program 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Abadi, M., Flanagan, C., Freund, S.N.: Types for safe locking: Static race detection for Java. TOPLAS 28 (2006)Google Scholar
  2. 2.
    Bouajjani, A., Emmi, M.: Analysis of recursively parallel programs. In: POPL 2012, pp. 203–214. ACM (2012)Google Scholar
  3. 3.
    Boyapati, C., Lee, R., Rinard, M.: Ownership types for safe program.: preventing data races and deadlocks. In: OOPSLA, pp. 211–230. ACM (2002)Google Scholar
  4. 4.
    Brookes, S.D., Hoare, C.A.R., Roscoe, A.W.: A theory of communicating sequential processes. J. ACM 31, 560–599 (1984)MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Carlsson, R., Millroth, H.: On cyclic process dependencies and the verification of absence of deadlocks in reactive systems (1997)Google Scholar
  6. 6.
    Caromel, D., Henrio, L., Serpette, B.P.: Asynchronous and deterministic objects. In: POPL, pp. 123–134. ACM (2004)Google Scholar
  7. 7.
    Chaki, S., Rajamani, S.K., Rehof, J.: Types as models: model checking message-passing programs. SIGPLAN Not. 37(1), 45–57 (2002)CrossRefzbMATHGoogle Scholar
  8. 8.
    Comtet, L.: Advanced Combinatorics: The Art of Finite and Infinite Expansions, Dordrecht, Netherlands (1974)Google Scholar
  9. 9.
    Requirement elicitation. Deliverable 5.1 of project FP7-231620 (HATS) (August 2009),
  10. 10.
    Flanagan, C., Qadeer, S.: A type and effect system for atomicity. In: PLDI, pp. 338–349. ACM (2003)Google Scholar
  11. 11.
    Flores-Montoya, A.E., Albert, E., Genaim, S.: May-happen-in-parallel based deadlock analysis for concurrent objects. In: Beyer, D., Boreale, M. (eds.) FMOODS/FORTE 2013. LNCS, vol. 7892, pp. 273–288. Springer, Heidelberg (2013)Google Scholar
  12. 12.
    Gay, S.J., Nagarajan, R.: Types and typechecking for communicating quantum processes. MSCS 16(3), 375–406 (2006)MathSciNetzbMATHGoogle Scholar
  13. 13.
    Giachino, E., Grazia, C.A., Laneve, C., Lienhardt, M., Wong, P.Y.H.: Deadlock analysis of concurrent objects: Theory and practice. In: Johnsen, E.B., Petre, L. (eds.) IFM 2013. LNCS, vol. 7940, pp. 394–411. Springer, Heidelberg (2013)CrossRefGoogle Scholar
  14. 14.
    Giachino, E., Laneve, C., Lienhardt, M.: A Framework for Deadlock Detection in ABS (2013), (submitted)
  15. 15.
    Giachino, E., Laneve, C., Lienhardt, M.: Deadlock Framework for ABS (DF4ABS) - online interface (2013),
  16. 16.
    Igarashi, A., Kobayashi, N.: A generic type system for the pi-calculus. Theor. Comput. Sci. 311(1-3), 121–163 (2004)MathSciNetCrossRefzbMATHGoogle Scholar
  17. 17.
    Johnsen, E.B., Hähnle, R., Schäfer, J., Schlatte, R., Steffen, M.: ABS: A core language for abstract behavioral specification. In: Aichernig, B.K., de Boer, F.S., Bonsangue, M.M. (eds.) Formal Methods for Components and Objects. LNCS, vol. 6957, pp. 142–164. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  18. 18.
    Kobayashi, N.: A partially deadlock-free typed process calculus. TOPLAS 20(2), 436–482 (1998)CrossRefGoogle Scholar
  19. 19.
    Kobayashi, N.: A new type system for deadlock-free processes. In: Baier, C., Hermanns, H. (eds.) CONCUR 2006. LNCS, vol. 4137, pp. 233–247. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  20. 20.
    Kobayashi, N.: TyPiCal (2007),
  21. 21.
    Laneve, C., Padovani, L.: The must preorder revisited. In: Caires, L., Vasconcelos, V.T. (eds.) CONCUR 2007. LNCS, vol. 4703, pp. 212–225. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  22. 22.
    Milner, R.: A Calculus of Communication Systems. LNCS, vol. 92. Springer, Heidelberg (1980)CrossRefzbMATHGoogle Scholar
  23. 23.
    Milner, R., Parrow, J., Walker, D.: A calculus of mobile processes, ii. Inf. and Comput. 100, 41–77 (1992)MathSciNetCrossRefzbMATHGoogle Scholar
  24. 24.
    Montanari, U., Pistore, M.: An introduction to history dependent automata. Electr. Notes Theor. Comput. Sci. 10, 170–188 (1997)CrossRefzbMATHGoogle Scholar
  25. 25.
    Neven, F., Schwentick, T., Vianu, V.: Towards regular languages over infinite alphabets. In: Sgall, J., Pultr, A., Kolman, P. (eds.) MFCS 2001. LNCS, vol. 2136, pp. 560–572. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  26. 26.
    Nielson, H.R., Nielson, F.: Higher-order concurrent programs with finite communication topology. In: POPL, pp. 84–97. ACM (1994)Google Scholar
  27. 27.
    Parastatidis, S., Webber, J.: MEP SSDL Protocol Framework (April 2005),
  28. 28.
    Schrter, C., Esparza, J.: Reachability analysis using net unfoldings. In: CS&P 2000, pp. 255–270 (2000)Google Scholar
  29. 29.
    Segoufin, L.: Automata and logics for words and trees over an infinite alphabet. In: Ésik, Z. (ed.) CSL 2006. LNCS, vol. 4207, pp. 41–57. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  30. 30.
    Suenaga, K.: Type-based deadlock-freedom verification for non-block-structured lock primitives and mutable references. In: Ramalingam, G. (ed.) APLAS 2008. LNCS, vol. 5356, pp. 155–170. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  31. 31.
    Tarjan, R.E.: Depth-first search and linear graph algorithms. SIAM J. Comput. 1(2), 146–160 (1972)MathSciNetCrossRefzbMATHGoogle Scholar
  32. 32.
    Vasconcelos, V.T., Martins, F., Cogumbreiro, T.: Type inference for deadlock detection in a multithreaded polymorphic typed assembly language. In: PLACES. EPTCS, vol. 17, pp. 95–109 (2009)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • Elena Giachino
    • 1
  • Cosimo Laneve
    • 1
  1. 1.Dept. of Computer Science and Egineering – INRIA FOCUSUniversità di BolognaItaly

Personalised recommendations