Skip to main content

The Axon: Normal Structure and Pathological Alterations

  • Chapter
  • First Online:
Biopsy Diagnosis of Peripheral Neuropathy

Abstract

The most common nerve biopsy findings are nonspecific axonal alterations such as axonal degeneration, depletion, and regeneration. The pathologist can assess the severity and chronicity of the damage, but infrequently can find an unequivocal structural indication of its underlying cause. Two major patterns of axonal disease can be identified: those changes indicating a disturbance of axonal metabolism (axonopathy) and those changes indicating axonal degeneration (Wallerian degeneration). Although electron microscopy provides a more detailed view of normal and pathological features than light microscopy, the stereotyped changes of Wallerian degeneration or axonopathy represent one final common pathway of disease and do not permit specific diagnosis of the underlying etiology. Only rarely do axonal alterations have specific implications, for example, giant axonal swellings with filamentous accumulations or the classic features of neuroaxonal dystrophy.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Ahonen RE (1981) Peripheral neuropathy in uremic patients and in renal transplant recipients. Acta Neuropathol 54:43–53

    CAS  PubMed  Google Scholar 

  • Alderson K (1992) Axonal swellings in human intramuscular nerves. Muscle Nerve 15:1284–1289

    CAS  PubMed  Google Scholar 

  • Araki T, Sasaki Y, Milbrandt J (2004) Increased nuclear NAD biosynthesis and SIRT1 activation prevent axonal degeneration. Science 305:1010–1013

    CAS  PubMed  Google Scholar 

  • Averback P, Langevin H (1978) Corpora amylacea of the lumbar spinal cord and peripheral nervous system. Arch Neurol 35:95–96

    CAS  PubMed  Google Scholar 

  • Babetto E, Beirowski B, Russler EV et al (2013) The Phr1 ubiquitin ligase promotes injury-induced axon self-destruction. Cell Rep 3(5):1422–1429

    CAS  PubMed Central  PubMed  Google Scholar 

  • Ballin RH, Thomas PK (1969) Changes at the nodes of Ranvier during wallerian degeneration: an electron microscope study. Acta Neuropathol 14:237–249

    CAS  PubMed  Google Scholar 

  • Bamburg JR (1988) The axonal cytoskeleton: stationary or moving matrix. Trends Neurosci 11:248–249

    CAS  PubMed  Google Scholar 

  • Barron SA, Heffner RR (1978) Weakness in malignancy: evidence for a remote effect of tumor on distal axons. Ann Neurol 4:268–274

    CAS  PubMed  Google Scholar 

  • Behse F (1990) Morphometric studies on the human sural nerve. Acta Neurol Scand Suppl 132:1–38

    CAS  PubMed  Google Scholar 

  • Beirowski B, Adalbert R, Wagner D (2005) The progressive nature of Wallerian degeneration in wild-type and slow Wallerian degeneration (WldS) nerves. BMC Neurosci 6:6 http://dx.doi.org/10.1186/1471-2202-6-6

  • Bernsen R, Busard H, Ter Lakk HJ et al (1989) Polyglucosan bodies in intramuscular motor nerves. Acta Neuropathol 77:629–633

    CAS  PubMed  Google Scholar 

  • Berthold CH (1978) Morphology of normal peripheral axons. In: Waxman SG (ed) Physiology and pathobiology of axons. Raven Press, New York, pp 3–63

    Google Scholar 

  • Berthold CH, Fabricius C, Rydmark M, Andersen B (1993) Axoplasmic organelles at nodes of Ranvier. I Occurrence and distribution in large myelinated spinal root axons of the adult cat. J Neurocytol 22:925–940

    CAS  PubMed  Google Scholar 

  • Beuche W, Friede RL (1984) The role of non-resident cells in Wallerian degeneration. J Neurocytol 13:767–796

    CAS  PubMed  Google Scholar 

  • Bignami A, Dahl D, Nguyen BT, Crosby CJ (1981) The fate of axonal debris in wallerian degeneration of rat optic and sciatic nerves. J Neuropathol Exp Neurol 40:537–550

    CAS  PubMed  Google Scholar 

  • Bilbao JM (1995) Peripheral nerves. In: Rosai J (ed) Ackerman’s surgical pathology, 8th edn. CV Mosby Company, St. Louis

    Google Scholar 

  • Black MM, Lasek RJ (1979) Slowing the rate of axonal regeneration during growth and maturation. Exp Neurol 63:108–119

    CAS  PubMed  Google Scholar 

  • Bouldin TW, Earnhardt TS, Goines ND (1991) Restoration of blood-nerve barrier in neuropathy is associated with axonal regeneration and remyelination. J Neuropathol Exp Neurol 50:719–728

    CAS  PubMed  Google Scholar 

  • Bradley WG, Lassman LP, Pearce GW, Walton JN (1970) The neuromyopathy of vincristine in man. Clinical, electrophysiological and pathological studies. J Neurol Sci 10:107–131

    CAS  PubMed  Google Scholar 

  • Bray D (1989) Growth cone formation and navigation: axonal growth. Curr Opin Cell Biol 1:87–90

    CAS  PubMed  Google Scholar 

  • Brown A (2013) Axonal transport. In: Pfaff DW (ed) Neuroscience in the 21st century. From basic to clinical, Springer, New York, pp. 255–308. doi:10.1007/978-1-4614-1997-6_14

  • Brown A, Jung P (2013) A critical reevaluation of the stationary axonal cytoskeleton hypothesis. Cytoskeleton 70:1–11

    PubMed Central  PubMed  Google Scholar 

  • Bruck W, Friede RL (1990) Anti-macrophage CR3 antibody blocks myelin phagocytosis by macrophages in vitro. Acta Neuropathol (Berl) 80:415–418

    CAS  Google Scholar 

  • Bruck W, Friede RL (1991) The role of complement in myelin phagocytosis during PNS wallerian degeneration. J Neurol Sci 103:182–187

    CAS  PubMed  Google Scholar 

  • Cafferty MS, Lovelace RE, Hays AP et al (1991) Polyglucosan body disease. Muscle Nerve 14:102–107

    CAS  PubMed  Google Scholar 

  • Carroll SL, Miller ML, Frohnert PW et al (1997) Expression of neuregulins and their putative receptors, ErbB2 and ErbB3, is induced during Wallerian degeneration. J Neurosci 17:642–659

    Google Scholar 

  • Cavanagh JB (1979) The “dying back” process. A common denominator in many naturally occurring and toxic neuropathies. Arch Pathol Lab Med 103:659–664

    CAS  PubMed  Google Scholar 

  • Chaudry V, Glass JD, Griffin JW (1992) Wallerian degeneration in peripheral nerve disease. Neurol Clin 10:613–627

    Google Scholar 

  • Chowdhury SKR, Smith DR, Fernyhough P (2013) The role of aberrant mitochondrial bioenergetics in diabetic neuropathy. Neurobiol Dis 51:56–65

    CAS  PubMed  Google Scholar 

  • Chretien M, Patey G, Souyri F, Droz B (1981) “Acrylamide induced” neuropathy and impairment of axonal transport of proteins. II. Abnormal accumulations of smooth endoplasmic reticulum at sites of focal retention of fast transported proteins. Brain Res 205:15–28

    CAS  PubMed  Google Scholar 

  • Collins GH, Webster H dF, Victor M (1964) The ultrastructure of myelin and axonal alterations in sciatic nerves of thiamine deficient and starving rats. Acta Neuropathol 3:511–521

    CAS  PubMed  Google Scholar 

  • Court FA, Hendriks WTJ, MacGillavry HD et al (2008) Schwann cell to axon transfer of ribosomes: toward a novel understanding of the role of glia in the nervous system. J Neurosci 28:11024–11029

    CAS  PubMed  Google Scholar 

  • Court FA, Midha R, Cisterna BA et al (2011) Morphological evidence for a transport of ribosomes from Schwann cells to regenerating axons. Glia 59:1529–1539

    PubMed  Google Scholar 

  • Davenport JG, Farrell DF, Sumi SM (1976) “Giant axonal neuropathy” caused by industrial chemicals: neurofilamentous axonal masses in man. Neurology 26:919–923

    CAS  PubMed  Google Scholar 

  • DeRojas TC, Goldstein BD (1990) Lack of evidence for the size principle of selective vulnerability of axons in toxic neuropathies. I. The effects of subcutaneous injections of 2,5-hexanedione on behaviour and muscle spindle function. Toxicol Appl Pharmacol 104:47–58

    CAS  Google Scholar 

  • Donaghy M, Brett EM, Ormederod IEC et al (1988) Giant axonal neuropathy: observations on a further patient. J Neurol Neurosurg Psychiatry 61:991–994

    Google Scholar 

  • Donat JR, Wisniewski HM (1973) The spatio-temporal pattern of Wallerian degeneration in mammalian peripheral nerves. Brain Res 53:41–53

    CAS  PubMed  Google Scholar 

  • Dyck PJ (1993) Neuronal atrophy and degeneration predominantly affecting peripheral sensory and autonomic neurons. In: Dyck PJ, Thomas PK et al (eds) Peripheral neuropathy, 3rd edn. WB Saunders, Philadelphia, pp 1065–1093

    Google Scholar 

  • Dyck PJ, Hopkins AP (1972) Electron microscopic observations on degeneration and regeneration of unmyelinated fibres. Brain 95:223–234

    Google Scholar 

  • Dyck PJ, Lais AC (1973) Evidence for segmental demyelination secondary to axonal degeneration in Friedreich’s ataxia. In: Kakulas BK (ed) Clinical studies in myology. Excerpta Medica, Amsterdam, pp 253–263

    Google Scholar 

  • Dyck PJ, Johnson WJ, Lambert EH, O’Brien PC (1971) Segmental demyelination secondary to axonal degeneration in uremic neuropathy. Mayo Clin Proc 46:400–431

    CAS  PubMed  Google Scholar 

  • Dyck PJ, Ellefson RD, Yao JK, Herbert PN (1978) Adult-onset of Tangier disease. I Morphometric and pathologic studies suggesting delayed degradation of neutral lipids after fiber degeneration. J Neuropathol Exp Neurol 37:119–137

    CAS  PubMed  Google Scholar 

  • Dyck PJ, Lais AC, Karnes JL et al (1981) Permanent axotomy, a model of axonal atrophy and secondary segmental demyelination and remyelination. Ann Neurol 9:575–583

    CAS  PubMed  Google Scholar 

  • Dyck PJ, Nukada H, Lais AC, Karnes JL (1984) Permanent axotomy: a model of chronic neuronal degeneration preceded by axonal atrophy, myelin remodeling, and degeneration. In: Dyck PJ, Thomas PK et al (eds) Peripheral neuropathy, 2nd edn. WB Saunders, Philadelphia, pp 666–690

    Google Scholar 

  • Dyck PJ, Giannini C, Lais A et al (1993a) Pathologic alterations of nerves. In: Dyck PJ, Thomas PK (eds) Peripheral neuropathy, 3rd edn. WB Saunders, Philadelphia, pp 544–556

    Google Scholar 

  • Dyck PJ, Chance P, Lebo R, Carney JA et al (1993b) Hereditary motor and sensory neuropathies. In: Dyck PJ, Thomas PK (eds) Peripheral neuropathy, 3rd edn. WB Saunders, Philadelphia, pp 1094–1136

    Google Scholar 

  • Edstrom A, Kanje M, Rusovan A (1988) Orthograde and retrograde axonal transport in the regenerating frog sciatic nerve show different sensitivities to vanadate. Acta Physiol Scand 134:437–441

    CAS  PubMed  Google Scholar 

  • Farinon AM, Marbini A, Gemignani F et al (1984) Skeletal muscle and peripheral nerve changes caused by chronic arterial insufficiency: significance and clinical correlations, histological, histochemical and ultrastructural study. Clin Neuropathol 3:240–252

    CAS  PubMed  Google Scholar 

  • Fenrich K, Gordon T (2004) Canadian Association of Neuroscience review: axonal regeneration in the peripheral and central nervous systems – current issues and advances. Can J Neurol Sci 31:142–156

    PubMed  Google Scholar 

  • Friede RL (1971) Changes in microtubules and neurofilaments in constricted, hypoplastic nerve fibers. Acta Neuropathol 5(Suppl):216–225

    PubMed  Google Scholar 

  • Friede RL, Samorajski T (1971) Axon caliber related to neurofilaments and microtubules in sciatic nerve fibers of rats and mice. Anat Rec 167:379–388

    Google Scholar 

  • Fugleholm K, Schmalbruch H, Krarup C (1994) Early peripheral nerve regeneration after crushing, sectioning, and freeze studied by implanted electrodes in the cat. J Neurosci 14(Part 1):2659–2673

    CAS  PubMed  Google Scholar 

  • Fuller GN, Jacobs JM, Guiloff RJ (1990) Axonal atrophy in the painful peripheral neuropathy in AIDS. Acta Neuropathol 81:198–203

    CAS  PubMed  Google Scholar 

  • Fullerton PM, Gilliatt RW, Lascelles RG, Morgan-Hughes JA (1965) The relation between fibre diameter and internodal length in chronic neuropathy. J Physiol 178:26P–28P

    Google Scholar 

  • Gainer H, Tasaki I, Lasek RJ (1977) Evidence for the glia-neuron protein transfer hypothesis from intracellular perfusion studies of squid giant axons. J Cell Biol 74:524–530

    CAS  PubMed  Google Scholar 

  • Gardner MB, Goodman WN (1969) Ataxia–Telangiectasia. Electron microscopic study of a nerve biopsy. Bull Los Angeles Neurol Soc 34:23–38

    CAS  PubMed  Google Scholar 

  • Gastaut JL, Pellisier JF (1984) Neuropathie au cisplatine, etude clinique electrophysiologique et morphologique. Rev Neurol 141:614–626

    Google Scholar 

  • Gatzinsky KP, Berthold CH (1990) Lysosomal activity at nodes of Ranvier during retrograde axonal transport of horseradish peroxidase in alpha-motor neurons of the cat. J Neurocytol 19:989–1002

    CAS  PubMed  Google Scholar 

  • Ghabriel MN, Allt G (1979) The role of Schmidt-Lanterman incisures in Wallerian degeneration. I A quantitative teased fiber study. Acta Neuropathol 48:83–93

    Google Scholar 

  • Giannini C, Dyck PJ (1990) The fate of Schwann cell basement membranes in permanently transected nerves. J Neuropathol Exp Neurol 49:550–563

    CAS  PubMed  Google Scholar 

  • Glass JD (2004) Wallerian degeneration as a window to peripheral neuropathy. J Neurol Sci 220:123–124

    PubMed  Google Scholar 

  • Gold BG, Griffin JW, Price D (1985) Slow axonal transport in acrylamide neuropathy: different abnormalities produced by single dose and continuous administration. J Neurosci 5:1755–1768

    CAS  PubMed  Google Scholar 

  • Gottfried MR, Graham DG, Morgan M et al (1985) The morphology of carbon disulfide neurotoxicity. Neurotoxicology 6:89–96

    CAS  PubMed  Google Scholar 

  • Griffin JW, Price DL (1981) Demyelination in experimental IDPN and hexacarbon neuropathies: evidence for an axonal influence. Lab Invest 45:130–141

    CAS  PubMed  Google Scholar 

  • Griffin JW, Watson DF (1988) Axonal transport in neurological disease. Ann Neurol 23:3–13

    CAS  PubMed  Google Scholar 

  • Griffin JW, Price JW, Drachman DB (1977) Impaired axonal regeneration in acrylamide intoxication. J Neurobiol 8:355–370

    CAS  PubMed  Google Scholar 

  • Griffin JW, Hoffman PN, Clark AW et al (1978) Slow axonal transport of neurofilament proteins: impairment by 3,3’-iminodipropionitrile administration. Science 202:633–635

    CAS  PubMed  Google Scholar 

  • Griffin JW, George R, Lobato C et al (1992) Macrophage responses and myelin clearance during Wallerian degeneration: relevance to immune mediated demyelination. J Neuroimmunol 40:153–165

    CAS  PubMed  Google Scholar 

  • Griffin JW, George R, Ho T (1993) Macrophage systems in peripheral nerves. A review. J Neuropathol Exp Neurol 52:553–560

    CAS  PubMed  Google Scholar 

  • Guzik BW, Goldstein LS (2004) Microtubule-dependent transport in neurons: steps towards an understanding of regulation, function and dysfunction. Curr Opin Cell Biol 16:443–450

    CAS  PubMed  Google Scholar 

  • Hann-Bonnekoh PG, Scheidt P, Friede RL (1989) Myelin phagocytosis by peritoneal macrophages in organ cultures of mouse peripheral nerve. A new model for studying myelin phagocytosis in vitro. J Neuropathol Exp Neurol 48:140–153

    Google Scholar 

  • Hanyu N, Ikeda S, Nakadai A et al (1989) Peripheral nerve pathological findings in familial amyloid polyneuropathy: a correlative study of proximal sciatic nerve and sural nerve lesions. Ann Neurol 25:340–350

    CAS  PubMed  Google Scholar 

  • Hirata K, Mitoma H, Ueno N et al (1999) Differential response of macrophage subpopulations to myelin degradation in the injured rat sciatic nerve. J Neurocytol 28:685–695

    CAS  PubMed  Google Scholar 

  • Hirokawa N (1982) Cross-linker system between neurofilaments, microtubules, and membranous organelles in frog axons revealed by the quick-freeze, deep etching method. J Cell Biol 94:129–142

    CAS  PubMed Central  PubMed  Google Scholar 

  • Hoffman PN, Griffin JW, Price DL (1984) Control of axonal caliber by neurofilament transport. J Cell Biol 99:705–714

    CAS  PubMed  Google Scholar 

  • Hoffman PN, Cleveland DW, Griffin JW et al (1987) Neurofilament gene expression: a major determinant of axonal caliber. Proc Natl Acad Sci U S A 84:3472–3476

    CAS  PubMed Central  PubMed  Google Scholar 

  • Hoke A, Redett R, Hameed H et al (2006) Schwann cells express motor and sensory phenotypes that regulate axon regeneration. J Neurosci 26:9646–9655

    CAS  PubMed  Google Scholar 

  • Holtzman E, Novikoff AB (1965) Lysosomes in the rat sciatic nerve following crush. J Cell Biol 27:651–669

    CAS  PubMed Central  PubMed  Google Scholar 

  • Jedrzejowska H (1977) Some histological aspects of amyloid polyneuropathy. Acta Neuropathol 37:119–125

    CAS  PubMed  Google Scholar 

  • Kachar B, Bridgeman PC, Reese TS (1987) Dynamic shape changes of cytoplasmic organelles translocating along microtubules. J Cell Biol 105:1267–1271

    CAS  PubMed  Google Scholar 

  • Kerschensteiner M, Schwab ME, Lichtman JW et al (2005) In vivo imaging of axonal degeneration and regeneration in the injured spinal cord. Nat Med 11:572–577

    CAS  PubMed  Google Scholar 

  • Koenig E, Martin R, Titmus M, Sotelo-Silveira JR (2000) Cryptic peripheral ribosomal domains distributed intermittently along mammalian myelinated axons. J Neurosci 20:8390–8400

    CAS  PubMed  Google Scholar 

  • Korthals JK, Korthals MA, Wisniewski HM (1978) Peripheral nerve ischemia. Part 2 Accumulation of organelles. Ann Neurol 4:487–498

    CAS  PubMed  Google Scholar 

  • Lampert PW (1967) A comparative electron microscopic study of reactive, degenerating, regenerating and dystrophic axons. J Neuropathol Exp Neurol 26:345–368

    CAS  PubMed  Google Scholar 

  • Lasek RJ, Katz MJ (1987) Mechanisms at the axon’s tip regulate metabolic processes critical to axonal elongation. Prog Brain Res 71:49–60

    CAS  PubMed  Google Scholar 

  • Lasek RJ, Garner JA, Brady ST (1984) Axonal transport of the cytoplasmic matrix. J Cell Biol 99:212 s–221s

    CAS  Google Scholar 

  • Latker CH, Wadhwani KC, Balbo A, Rapoport SI (1991) Blood-nerve barrier in the frog during Wallerian degeneration: are axons necessary for maintenance of the barrier function. J Comp Neurol 308:650–664

    CAS  PubMed  Google Scholar 

  • LeBlanc AC, Poduslo JF (1990) Axonal modulation of myelin gene expression in the peripheral nerve. J Neurosci Res 26:317–326

    CAS  PubMed  Google Scholar 

  • Lindsey JD, Ellisman MH (1985) The neuronal endomembrane system. III The origins of the axoplasmic reticulum and discrete axonal cisternae at the axon hillock. J Neurosci 5:3135–3144

    CAS  PubMed  Google Scholar 

  • Lubinska L (1977) Early course of Wallerian degeneration in myelinated fibres of the rat phrenic nerve. Brain Res 130:41–63

    Google Scholar 

  • Ma M (2013) Role of calpains in the injury-induced dysfunction and degeneration of the mammalian axon. Neurobiol Dis 60:61–79

    CAS  PubMed  Google Scholar 

  • Martini R, Schachner M, Brushart TM (1994) The L2/HNK-1 carbohydrate is preferentially expressed by previously motor axon-associated Schwann cells in reinnervated peripheral nerves. J Neurosci 14(Pt 2):7180–7191

    CAS  PubMed  Google Scholar 

  • McQuarrie IG, Brady ST, Lasek R (1989) Retardation in the slow axonal transport of cytoskeletal elements during maturation and aging. Neurobiol Aging 10:359–365

    CAS  PubMed  Google Scholar 

  • Meier C, Bischoff A (1977) Polyneuropathy in hypothyroidism. Clinical and nerve biopsy study of 4 cases. J Neurol 215:103–114

    CAS  PubMed  Google Scholar 

  • Mendell JR, Sahenk Z, Saida K et al (1977) Alterations of fast axoplasmic transport in experimental methyl n-butyl ketone neuropathy. Brain Res 133:107–118

    CAS  PubMed  Google Scholar 

  • Michailov GV, Sereda MW, Brinkmann BG et al (2004) Axonal neuregulin-1 regulates myelin sheath thickness. Science 304:700–703

    CAS  PubMed  Google Scholar 

  • Miller MS, Spencer PS (1985) The mechanism of acrylamide axonopathy. Annu Rev Pharmacol Toxicol 25:643–666

    CAS  PubMed  Google Scholar 

  • Miller BR, Press C, Daniels RW et al (2009) A dual leucine kinase-dependent axon self destruction program promotes wallerian degeneration. Nat Neurosci 12:387–389

    CAS  PubMed Central  PubMed  Google Scholar 

  • Muller M, Wacker K, Getts D et al (2008) Further evidence for a crucial role of resident endoneurial macrophages in peripheral nerve disorders: lessons from acrylamide-induced neuropathy. Glia 56:1005–1016

    PubMed  Google Scholar 

  • Murinson BB, Griffin JW (2004) C-fiber structure varies with location in peripheral nerve. J Neuropathol Exp Neurol 63:246–254

    PubMed  Google Scholar 

  • Niwa S, Takahashi H, Hirokawa N (2013) β-tubulin mutations that cause severe neuropathies disrupt axonal transport. EMBO J 32:1352–1364

    CAS  PubMed Central  PubMed  Google Scholar 

  • Nixon RA (1992) Slow axonal transport. Curr Opin Cell Biol 4:8–14

    CAS  PubMed  Google Scholar 

  • Ochoa J (1970) Isoniazid neuropathy in man: quantitative electron microscope study. Brain 93:831–850

    CAS  PubMed  Google Scholar 

  • Ochs S, Brimijoin WS (1993) Axonal Transport. In: Dyck PJ, Thomas PK et al (eds) Peripheral neuropathy, 3rd edn. W.B. Saunders, Philadelphia, pp 331–360

    Google Scholar 

  • Ochs S, Jersild RA Jr, Li JM (1989) Slow transport of freely movable cytoskeletal components shown by beading partition of nerve fibers in the cat. Neuroscience 33:421–430

    CAS  PubMed  Google Scholar 

  • Ohara S, Ikuta F (1985) On the occurrence of the fenestrated vessels in Wallerian degeneration of the peripheral nerve. Acta Neuropathol 68:259–262

    CAS  PubMed  Google Scholar 

  • Ohi T, Kyle RA, Dyck PJ (1985) Axonal attenuation and secondary segmental demyelination in myeloma neuropathies. Ann Neurol 17:255–261

    CAS  PubMed  Google Scholar 

  • Ohnishi A, Peterson CM, Dyck PJ (1975) Axonal degeneration in sodium cyanate-induced neuropathy. Arch Neurol 32:530–534

    CAS  PubMed  Google Scholar 

  • Ohnishi A, O’Brien PC, Dyck PJ (1976) Studies to improve fixation of Human Nerves V. Effect of temperature, fixative, and CaCl2 on density of microtubules and neurofilaments. J Neurol Sci 35:167–179

    CAS  Google Scholar 

  • Olsson Y (1990) Microenvironment of the peripheral nervous system under normal and pathological conditions. Crit Rev Neurobiol 5:265–311

    CAS  PubMed  Google Scholar 

  • Osterloh JM, Yang J, Rooney TM et al (2012) dSarm/Sarm1 is required for activation of an injury-induced axon death pathway. Science 337:481–484

    CAS  PubMed  Google Scholar 

  • Paulson JC, McClure WO (1975) Inhibition of axoplasmic transport by colchicine, podophyllotoxin and vinblastine: an effect on microtubules. Ann N Y Acad Sci 253:517–527

    CAS  PubMed  Google Scholar 

  • Pestronk A, Keogh JP, Griffin JW (1980) Dimethylaminopropionitrile. In: Spencer PS, Schaumberg HH (eds) Experimental and clinical neurotoxicology. Williams & Wilkins, Baltimore, pp 422–429

    Google Scholar 

  • Prineas J (1969a) The pathogenesis of dying-back polyneuropathies. Part I An ultrastructural study of experimental tri-ortho-cresyl phosphate intoxication in the cat. J Neuropathol Exp Neurol 28:571–597

    CAS  PubMed  Google Scholar 

  • Prineas J (1969b) The pathogenesis of dying back polyneuropathies: II. An ultrastructural study of experimental acrylamide intoxication in the cat. J Neuropathol Exp Neurol 28:598–621

    CAS  PubMed  Google Scholar 

  • Raff MC, Whitmore AV (2002) Finn JT (2002) Axonal self-destruction and neurodegeneration. Science 296:868–871

    CAS  PubMed  Google Scholar 

  • Reles A, Friede RL (1991) Axonal cytoskeleton at the nodes of Ranvier. J Neurocytol 20:450–458

    CAS  PubMed  Google Scholar 

  • Robitaille Y, Carpenter S, Karpati G, DiMauro S (1980) A distinct form of adult polyglucosan body disease with massive involvement of central and peripheral neuronal processes and astrocytes. Brain 103:315–336

    CAS  PubMed  Google Scholar 

  • Roytta M, Salonen V (1988) Long term endoneurial changes after nerve transection. Acta Neuropathol 76:35–45

    CAS  PubMed  Google Scholar 

  • Roytta M, Salonen V, Peltonen J (1987) Reversible endoneurial changes after nerve injury. Acta Neuropathol 73:323–329

    CAS  PubMed  Google Scholar 

  • Rydmark M, Berthold CH (1983) Electron microscopic serial section analysis of nodes of Ranvier in lumbar spinal roots of the cat. A morphometric study of nodal compartments in fibres of different sizes. J Neurocytol 12:537–565

    CAS  PubMed  Google Scholar 

  • Sahenk Z, Mendell JR (1980) Ultrastructural study of zinc pyridinethione-induced peripheral neuropathy. J Neuropathol Exp Neurol 38:532–550

    Google Scholar 

  • Sahenk Z, Brady ST, Mendell JR (1987) Studies on the pathogenesis of vincristine-induced neuropathy. Muscle Nerve 10:80–84

    CAS  PubMed  Google Scholar 

  • Said G, Hontebeyrie-Joskowicz M (1992) Nerve lesions induced by macrophage activation. Res Immunol 143:589–599

    CAS  PubMed  Google Scholar 

  • Said G, Ropert A, Faux N (1984) Length dependent degeneration of fibrils in Portuguese amyloid neuropathy. Neurology 34:1025–1032

    CAS  PubMed  Google Scholar 

  • Salonen V, Roytta M, Peltonen J (1987) The effects of nerve transection on the endoneurial collagen fibril sheaths. Acta Neuropathol 74:13–21

    CAS  PubMed  Google Scholar 

  • Scarpini E, Ross A, Beretta S et al (1989) Expression of NGF receptors during human nerve development and in peripheral neuropathies. In: Scarpini E, Fiori MG, Pleasure D, Scarlato GS (eds) Peripheral nerve development and regeneration: recent advances and clinical applications. Liviana Press, Padova, pp 121–133

    Google Scholar 

  • Schlaepfer WW, Hager H (1964) Ultrastructural studies of INH-induced neuropathy in rats: I. early axonal changes. Am J Pathol 45:209–220

    PubMed Central  Google Scholar 

  • Schlaepfer WW, Hasler MB (1979) Characterization of the calcium induced disruption of neurofilaments in rat peripheral nerves. Brain Res 168:299–309

    CAS  PubMed  Google Scholar 

  • Schlenska GK, Spalke G (1975) Zur klinik und morphologie der bleipolyneuropathie des menschen. Nervenarzt 46:501–508

    CAS  PubMed  Google Scholar 

  • Schnapp BJ, Reese TS (1982) Cytoplasmic structure in rapid-frozen axons. J Cell Biol 94:667–679

    CAS  PubMed  Google Scholar 

  • Schochet SS Jr (1971) Mitochondrial changes in axonal dystrophy produced by Vitamin E deficiency. Acta Neuropathol Suppl 5:54–60

    Google Scholar 

  • Schochet SS, Chesson AL Jr (1977) Giant axonal neuropathy: possibly secondary to Vitamin B12 malabsorption. Acta Neuropathol 40:79–83

    PubMed  Google Scholar 

  • Schroder JM, Hoheneck M, Weis J, Deist H (1985) Ethylene Oxide polyneuropathy: clinical follow-up study with morphometric and electron microscopic findings in a sural nerve biopsy. J Neurol 232:83–90

    CAS  PubMed  Google Scholar 

  • Seitz RJ, Reiners K, Himmelmann F et al (1989) The blood nerve barrier in Wallerian degeneration: a sequential long-term study. Muscle Nerve 12:627–635

    CAS  PubMed  Google Scholar 

  • Sheetz MP, Steuer ER, Schroer TA (1989) The mechanism and regulation of fast axonal transport. Trends Neurosci 12:474–478

    CAS  PubMed  Google Scholar 

  • Singer M, Steinberg MC (1972) Wallerian degeneration: a reevaluation based on transected and colchicine poisoned nerves in the amphibian Triturus. Am J Anat 133:51–84

    CAS  PubMed  Google Scholar 

  • Sobue G, Nakao N, Murakami K (1990) Type I familial amyloid polyneuropathy. A pathological study of the peripheral nervous system. Brain 113:903–919

    PubMed  Google Scholar 

  • Spencer PS, Schaumburg HH (1977) Central Peripheral distal axonopathy: the pathology of dying back poly neuropathies. In: Zimmerman H (ed) Progress in neuropathology. Grune & Stratton, New York, pp 253–295

    Google Scholar 

  • Spencer PS, Thomas PK (1974) Ultrastructural studies of the dying-back process. II The sequestration and removal by Schwann cells and oligodendrocytes of organelles from normal and diseases axons. J Neurocytol 3:763–783

    CAS  PubMed  Google Scholar 

  • Spencer PS, Sabri MI, Schaumberg HH et al (1979) Does a defect of energy metabolism underlie axonal degeneration in polyneuropathies? Ann Neurol 5:501–507

    CAS  PubMed  Google Scholar 

  • Stam FC, Roukema PA (1973) Histochemical and biochemical aspects of corpora amylacea. Acta Neuropathol 25:95–102

    CAS  PubMed  Google Scholar 

  • Steyaert A, Cisse S, Merhi Y et al (1990) Purification and polypeptide composition of corpora amylacea from aged human brain. J Neurosci Methods 31:59–64

    CAS  PubMed  Google Scholar 

  • Stoll G, Muller HW (1999) Nerve injury, axonal degeneration and neural regeneration: basic insights. Brain Pathol 9:313–325

    CAS  PubMed  Google Scholar 

  • Stoll G, Griffin JW, Li CY, Trapp D (1989) Wallerian degeneration in the peripheral nervous system: participation of both Schwann cells and macrophages in myelin degradation. J Neurocytol 18:671–683

    CAS  PubMed  Google Scholar 

  • Takahashi K, Nakamura H (1976) Axonal degeneration in beriberi neuropathy. Arch Neurol 33:836–841

    CAS  PubMed  Google Scholar 

  • Tang Y, Scott D, Das U (2013) Fast vesicle transport is required for the slow axonal transport of synapsin. J Neurosci 33:15362–15375

    CAS  PubMed Central  PubMed  Google Scholar 

  • Taniuchi M, Clark HB, Johnson EM Jr (1986) Induction of nerve growth factor receptor in Schwann cells after axotomy. Proc Natl Acad Sci U S A 83:4094–4098

    CAS  PubMed Central  PubMed  Google Scholar 

  • Thomas PK, King RHM (1974) The degeneration of unmyelinated axons following nerve section: an ultrastructural study. J Neurocytol 3:497–512

    CAS  PubMed  Google Scholar 

  • Thorner PS, Bilbao JM, Sima AAF, Briggs S (1981) Porphyric neuropathy: an ultrastructural and quantitative case study. Can J Neurol Sci 8:281–287

    CAS  PubMed  Google Scholar 

  • Tona A, Perides G, Rahemtulla F, Dahl D (1993) Extracellular matrix in regenerating rat sciatic nerve: a comparative study on the localization of laminin, hyaluronic acid, and chondroitin sulfate proteoglycans, including versican. J Histochem Cytochem 41:593–599

    CAS  PubMed  Google Scholar 

  • Tredici G, Minazzi M (1975) Alcoholic neuropathy. An electron microscopic study. J Neurol Sci 25:333–346

    CAS  PubMed  Google Scholar 

  • Tsao JW, Brown MC, Carden MJ et al (1994) Loss of the compound action potential: an electrophysiological, biochemical and morphological study of early events in axonal degeneration in the C57BL/Ola mouse. Eur J Neurosci 6:516–524

    CAS  PubMed  Google Scholar 

  • Tsukita S, Ishikawa H (1976) Three dimensional distribution of smooth endoplasmic reticulum in myelinated axons. J Electron Microsci 25:141–149

    CAS  Google Scholar 

  • Urtasun RC, Chapman JD, Feldstein ML et al (1978) Peripheral neuropathy related to misonidazole: incidence and pathology. Br J Cancer 37(Suppl III):271–275

    Google Scholar 

  • Vallee RB, Shpetner HS, Paschal BM (1989) The role of dynein in retrograde axonal transport. Trends Neurosci 12:66–70

    CAS  PubMed  Google Scholar 

  • Vital C, Vallat JM (1987) Ultrastructural study of the human diseased peripheral nerve, 2nd edn. Elsevier, New York, figure 67

    Google Scholar 

  • Vogel P, Bariel M, Goebel HH, Dyck PJ (1985) Hereditary motor sensory neuropathy type II with neurofilament accumulation: new finding or new disorder. Ann Neurol 17:455–461

    CAS  PubMed  Google Scholar 

  • Waller AV (1850) Experiments on the section of the glossopharyngeal and hypoglossal nerves of the frog, and observations of the alterations produced thereby in the structure of their primitive fibres. Philos Transact Royal Soc London B 140:423–429

    Google Scholar 

  • Wang JT, Medress ZA, Barres BA (2012) Axon degeneration: molecular mechanisms of a self-destruction pathway. J Cell Biol 196:7–18

    CAS  PubMed Central  PubMed  Google Scholar 

  • Weinberg HJ, Spencer PS (1978) The fate of Schwann cells isolated from axonal contact. J Neurocytol 7:555–569

    CAS  PubMed  Google Scholar 

  • Williams PL, Hall SM (1971a) Prolonged in vivo observations of normal peripheral nerve fibres and their acute reactions to crush and deliberate trauma. J Anat 108:397–408

    CAS  PubMed Central  PubMed  Google Scholar 

  • Williams PL, Hall SM (1971b) Chronic Wallerian degeneration – an in vivo and ultrastructural study. J Anat 109:487–503

    CAS  PubMed Central  PubMed  Google Scholar 

  • Wolfhart G (1957) Collateral regeneration from residual motor nerve fibers in amyotrophic lateral sclerosis. Neurology 7:124–134

    Google Scholar 

  • Wujek JR, Lasek RJ (1983) Correlation of axonal regeneration and slow component B in two branches of a single axon. J Neurosci 3:243–251

    CAS  PubMed  Google Scholar 

  • Wulfhekel U, Dullmann J (1972) Ein licht und elektronenoptischer. Beitrag Zur vinca alkaloid: polyneuropathie. Virchows Arch Pathol Pathol Anat 357:163–178

    CAS  Google Scholar 

  • Xiong X, Hao Y, Sun K et al (2012) The highwire ubiquitin ligase promotes axonal degeneration by tuning levels of Nmnat protein. PLoS Biol 10:e1001440

    CAS  PubMed Central  PubMed  Google Scholar 

  • Yagishita S, Ito Y, Nakano T (1977) Corpora amylacea in the peripheral nerve axons. Acta Neuropathol 37:73–76

    CAS  PubMed  Google Scholar 

  • Yamada KM, Spooner BS, Wessells NK (1971) Ultrastructure and function of growth cones and axons of cultured nerve cells. J Cell Biol 49:614–635

    CAS  PubMed Central  PubMed  Google Scholar 

  • Yasuda H, Shigeta Y, Dyck PJ (1990) Axon caliber and neurofilament content and three dimensional alterations of axon in hereditary motor and sensory neuropathy type II. In: Lovelace RE, Shapiro KH (eds) Charcot-Marie-Tooth disorders: pathophysiology, molecular genetics, and therapy. Wiley-Liss, New York, pp 87–92

    Google Scholar 

  • Zelena J (1980) Arrays of glycogen granules in the axoplasm of peripheral nerve at pre-ovoid stages of Wallerian degeneration. Acta Neuropathol 50:227–232

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Bilbao, J.M., Schmidt, R.E. (2015). The Axon: Normal Structure and Pathological Alterations. In: Biopsy Diagnosis of Peripheral Neuropathy. Springer, Cham. https://doi.org/10.1007/978-3-319-07311-8_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-07311-8_4

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-07310-1

  • Online ISBN: 978-3-319-07311-8

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics