Skip to main content
  • 1327 Accesses

Abstract

An EES element is a unit device or apparatus that stores electrical energy. Electrical energy can be stored in various forms of energy, such as mechanical energy, thermal energy, electrochemical energy, electrostatic energy, etc. Each of them has distinctive characteristics and applications. Among them, we focus on batteries and supercapacitors in this book. Those are the most widely deployed types of EES elements for various applications from small portable devices to grid-scale EES systems.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Akagi H, Sato H (2002) Control and performance of a doubly-fed induction machine intended for a flywheel energy storage system. IEEE Transactions on Power Electronics 17(1):109–116

    Article  Google Scholar 

  2. Allegre A, Bouscayrol A, Trigui R (2009) Influence of control strategies on battery/supercapacitor hybrid energy storage systems for traction applications. In: Proceedings of the IEEE Vehicle Power and Propulsion Conference (VPPC), pp 213–220

    Google Scholar 

  3. Barote L, Weissbach R, Teodorescu R, Marinescu C, Cirstea M (2008) Stand-alone wind system with vanadium redox battery energy storage. In: Proceedings of the International Conference on Optimization of Electrical and Electronic Equipment (OPTIM), pp 407–412

    Google Scholar 

  4. Bashash S, Moura SJ, Forman JC, Fathy HK (2011) Plug-in hybrid electric vehicle charge pattern optimization for energy cost and battery longevity. Journal of Power Sources 196(1):541–549

    Article  Google Scholar 

  5. Bernal-Agustn, Dufo-Lpez R (2009) Simulation and optimization of stand-alone hybrid renewable energy systems. Renewable and Sustainable Energy Reviews 13(8):2111–2118

    Article  Google Scholar 

  6. Bevrani H, Ghosh A, Ledwich G (2010) Renewable energy sources and frequency regulation: survey and new perspectives. IET Renewable Power Generation 4(5):438–457, DOI 10.1049/iet-rpg.2009.0049

    Article  Google Scholar 

  7. Bilodeau A, Agbossou K (2006) Control analysis of renewable energy system with hydrogen storage for residential applications. Journal of Power Sources

    Google Scholar 

  8. Borhan H, Vahidi A, Phillips A, Kuang M, Kolmanovsky I, Di Cairano S (2012) MPC-based energy management of a power-split hybrid electric vehicle. IEEE Transactions on Control Systems Technology 20(3):593–603, DOI 10.1109/TCST.2011.2134852

    Article  Google Scholar 

  9. Carter P, Baxter J, Newill T, Erekson T (2005) An ultracapacitor-powered race car update. In: Proceeding of the Electrical Insulation Conference and Electrical Manufacturing Expo, pp 267–274

    Google Scholar 

  10. Chen H, Cong TN, Yang W, Tan C, Li Y, Ding Y (2009) Progress in electrical energy storage system: A critical review. Progress in Natural Science 19(3):291–312

    Article  Google Scholar 

  11. Cho Y, Shim JW, Kim SJ, Min SW, Hur K (2013) Enhanced frequency regulation service using hybrid energy storage system against increasing power-load variability. In: IEEE PES

    Google Scholar 

  12. Chowdhury M, Haque M, Aktarujjaman M, Negnevitsky M, Gargoom A (2011) Grid integration impacts and energy storage systems for wind energy applications—a review. In: Proceedings of the IEEE Power and Energy Society General Meeting, pp 1–8

    Google Scholar 

  13. Darcovich K, Gupta N, Davidson I, Caroni T (2010) Residential electrical power storage scenario simulations with a large-scale lithium ion battery. Journal of Applied Electrochemistry 40:749–755

    Article  Google Scholar 

  14. Deane JP, Gallachóir BPÓ, McKeogh E (2010) Techno-economic review of existing and new pumped hydro energy storage plant. Renewable and Sustainable Energy Reviews 14(4):1293–1302

    Article  Google Scholar 

  15. Divya K, Østergaard J (2009) Battery energy storage technology for power systems—an overview. Electric Power Systems Research 79(4):511–520

    Article  Google Scholar 

  16. Dixon J, Ortuzar M (2002) Ultracapacitors + dc-dc converters in regenerative braking system. IEEE Aerospace and Electronic Systems Magazine 17(8):16–21, DOI 10.1109/MAES.2002.1028079

    Article  Google Scholar 

  17. Dougal R, Liu S, White R (2002) Power and life extension of battery-ultracapacitor hybrids. IEEE Transactions on Components and Packaging Technologies 25(1):120–131

    Article  Google Scholar 

  18. Ekren O, Ekren BY (2010) Size optimization of a PV/wind hybrid energy conversion system with battery storage using simulated annealing. Applied Energy 87(2):592–598

    Article  Google Scholar 

  19. Ekren O, Ekren BY, Ozerdem B (2009) Break-even analysis and size optimization of a PV/wind hybrid energy conversion system with battery storage – a case study. Applied Energy 86(7–8):1043–1054

    Article  Google Scholar 

  20. of Energy UD (2013) Grid energy storage

    Google Scholar 

  21. Evans A, Strezov V, Evans TJ (2012) Assessment of utility energy storage options for increased renewable energy penetration. Renewable and Sustainable Energy Reviews 16(6):4141–4147

    Article  Google Scholar 

  22. Frenzel B, Kurzweil P, Rönnebeck H (2011) Electromobility concept for racing cars based on lithium-ion batteries and supercapacitors. Journal of Power Sources 196(12):5364–5376

    Article  Google Scholar 

  23. He Y, Chowdhury M, Pisu P, Ma Y (2012) An energy optimization strategy for power-split drivetrain plug-in hybrid electric vehicles. Transportation Research Part C: Emerging Technologies 22(0):29–41, DOI http://dx.doi.org/10.1016/j.trc.2011.11.008, URL http://www.sciencedirect.com/science/article/pii/S0968090X11001604

    Google Scholar 

  24. Hou Y, Vidu R, Stroeve P (2011) Solar energy storage methods. Industrial & Engineering Chemistry Research 50(15):8954–8964

    Article  Google Scholar 

  25. Jiang X, Polastre J, Culler D (2005) Perpetual environmentally powered sensor networks. In: Proceedings of the International Symposium on Information Processing in Sensor Networks (IPSN), pp 463–468

    Google Scholar 

  26. Jin C, Lu S, Lu N, Dougal R (2011) Cross-market optimization for hybrid energy storage systems. In: Proceedings of the IEEE Power and Energy Society General Meeting, pp 1–6

    Google Scholar 

  27. Khaligh A, Li Z (2010) Battery, ultracapacitor, fuel cell, and hybrid energy storage systems for electric, hybrid electric, fuel cell, and plug-in hybrid electric vehicles: State of the art. IEEE Transactions on Vehicular Technology 59(6):2806–2814

    Article  Google Scholar 

  28. Kim Y, Wang Y, Chang N, Pedram M (2013) Computer-aided design and optimization of hybrid energy storage systems. Foundations and Trends in Electronic Design Automation 7(5):247–338

    Article  Google Scholar 

  29. Kirby BJ (2004) Frequency regulation basics and trends. Tech. rep., Oak Ridge National Laboratory

    Google Scholar 

  30. LeBreux M, Lacroix M, Lachiver G (2009) Control of a hybrid solar/electric thermal energy storage system. International Journal of Thermal Sciences pp 645–654

    Google Scholar 

  31. Lee TY, Chen N (1995) Determination of optimal contract capacities and optimal sizes of battery energy storage systems for time-of-use rates industrial customers. IEEE Transactions on Energy Conversion 10(3):562–568

    Article  Google Scholar 

  32. Liu J, Peng H (2008) Modeling and control of a power-split hybrid vehicle. IEEE Transactions on Control Systems Technology 16(6):1242–1251, DOI 10.1109/TCST.2008.919447

    Article  Google Scholar 

  33. Lund H, Salgi G (2009) The role of compressed air energy storage (CAES) in future sustainable energy systems. Energy Conversion and Management 50(5):1172–1179

    Article  Google Scholar 

  34. Miller J, Deshpande U, Dougherty T, Bohn T (2009) Power electronic enabled active hybrid energy storage system and its economic viability. In: Proceedings of the IEEE Applied Power Electronics Conference and Exposition (APEC), pp 190–198

    Google Scholar 

  35. Miller JR, Burke AF (2008) Electrochemical capacitors: Challenges and opportunities for real-world applications. The Electrochemical Society Interface 17:53–57

    Google Scholar 

  36. Moreno J, Ortuzar M, Dixon J (2006) Energy-management system for a hybrid electric vehicle, using ultracapacitors and neural networks. IEEE Transactions on Industrial Electronics 53(2):614–623

    Article  Google Scholar 

  37. Moura S, Fathy H, Callaway D, Stein J (2011) A stochastic optimal control approach for power management in plug-in hybrid electric vehicles. IEEE Transactions on Control Systems Technology 19(3):545–555, DOI 10.1109/TCST.2010.2043736

    Article  Google Scholar 

  38. Ortuzar M, Moreno J, Dixon J (2007) Ultracapacitor-based auxiliary energy system for an electric vehicle: Implementation and evaluation. IEEE Transactions on Industrial Electronics 54(4):2147–2156

    Article  Google Scholar 

  39. Oudalov A, Chartouni D, Ohler C (2007) Optimizing a battery energy storage system for primary frequency control. IEEE Trans Power Syst

    Google Scholar 

  40. Park C, Chou P (2006) AmbiMax: Autonomous energy harvesting platform for multi-supply wireless sensor nodes. In: Proceedings of the IEEE Communications Society Conference on Sensor, Mesh and Ad Hoc Communications and Networks (SECON), vol 1, pp 168–177

    Google Scholar 

  41. Park S, Wang Y, Kim Y, Chang N, Pedram M (2012) Battery management for grid-connected pv systems with a battery. In: Proceedings of the ACM/IEEE International Symposium on Low-Power Electronics and Design (ISLPED), pp 115–120

    Google Scholar 

  42. Roberts B, McDowall J (2005) Commercial successes in power storage. IEEE Power and Energy Magazine 3(2):24–30

    Article  Google Scholar 

  43. Shah V, Chaudhari R, Kundu P, Maheshwari R (2010) Performance analysis of hybrid energy storage system using hybrid control algorithm with bldc motor driving a vehicle. In: Proceedings of the Joint International Conference on Power Electronics, Drives and Energy Systems (PEDES), pp 1–5

    Google Scholar 

  44. Shin D, Kim Y, Seo J, Chang N, Wang Y, Pedram M (2011) Battery-supercapacitor hybrid system for high-rate pulsed load applications. In: Proceedings of the Design, Automation & Test in Europe Conference & Exhibition (DATE), pp 1–4

    Google Scholar 

  45. Shin D, Kim Y, Wang Y, Chang N, Pedram M (2012) Constant-current regulator-based battery-supercapacitor hybrid architecture for high-rate pulsed load applications. Journal of Power Sources 205(0):516–524

    Google Scholar 

  46. Shkolnikov E, Zhuk A, Vlaskin M (2011) Aluminum as energy carrier: Feasibility analysis and current technologies overview. Renewable and Sustainable Energy Reviews 15(9):4611–4623

    Article  Google Scholar 

  47. Simjee F, Chou P (2006) Everlast: Long-life, supercapacitor-operated wireless sensor node. In: Proceedings of the ACM/IEEE International Symposium on Low-Power Electronics and Design (ISLPED), pp 197–202

    Google Scholar 

  48. Teleke S, Baran M, Bhattacharya S, Huang A (2010) Optimal control of battery energy storage for wind farm dispatching. IEEE Transactions on Energy Conversion 25(3):787–794

    Article  Google Scholar 

  49. Thounthong P, Raël S, Davat B (2009) Energy management of fuel cell/battery/supercapacitor hybrid power source for vehicle applications. Journal of Power Sources 193(1):376–385

    Article  Google Scholar 

  50. Thounthong P, Chunkag V, Sethakul P, Sikkabut S, Pierfederici S, Davat B (2011) Energy management of fuel cell/solar cell/supercapacitor hybrid power source. Journal of Power Sources 196(1):313–324

    Article  Google Scholar 

  51. Torah R, Glynne-Jones P, Tudor M, O’Donnell T, Roy S, Beeby S (2008) Self-powered autonomous wireless sensor node using vibration energy harvesting. Measurement Science and Technology 19(12):125,202–125,209

    Google Scholar 

  52. Vazquez S, Lukic S, Galvan E, Franquelo L, Carrasco J (2010) Energy storage systems for transport and grid applications. IEEE Transactions on Industrial Electronics 57(12):3881–3895, DOI 10.1109/TIE.2010.2076414

    Article  Google Scholar 

  53. Walawalkar R, Apt J, Mancini R (2007) Economics of electric energy storage for energy arbitrage and regulation in New York. Energy Policy

    Google Scholar 

  54. Wood J (2012) Integrating renewables into the grid: Applying UltraBattery®; technology in MW scale energy storage solutions for continuous variability management. In: IEEE POWERCON

    Google Scholar 

  55. Zhang Y, Jiang Z, Yu X (2008) Control strategies for battery/supercapacitor hybrid energy storage systems. In: Proceedings of the IEEE Energy 2030 Conference, pp 1–6

    Google Scholar 

  56. Zhao X, Sanchez BM, Dobson PJ, Grant PS (2011) The role of nanomaterials in redox-based supercapacitors for next generation energy storage devices. Nanoscale 3:839–855

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Kim, Y., Chang, N. (2014). Background and Related Work. In: Design and Management of Energy-Efficient Hybrid Electrical Energy Storage Systems. Springer, Cham. https://doi.org/10.1007/978-3-319-07281-4_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-07281-4_2

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-07280-7

  • Online ISBN: 978-3-319-07281-4

  • eBook Packages: EnergyEnergy (R0)

Publish with us

Policies and ethics