• Konstantinos G. PapadopoulosEmail author


Since this book is dedicated to the definition of a general theory of tuning of the PID controller using the Magnitude Optimum criterion, a brief retrospect relevant to the evolution of the PID control and the Magnitude Optimum criterion is presented in this chapter. The strong effectiveness of the PID controller along with the simplicity of the criterion’s principle justifies its strong application within many industry applications till date. By presenting concrete examples from the industry, the scope of the chapter is also to argue and justify why the functionality of tuning the PID controller via the Magnitude Optimum criterion has a long history along with still a much promising future.


Control Loop Internal Model Control Automatic Tuning Direct Tuning Integral Absolute Error 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Ang KH, Chong G, Li Y (2005) PID control system analysis, design, and technology. IEEE Trans Control Syst Technol 13(4):559–576CrossRefGoogle Scholar
  2. 2.
    Åström KJ, Hägglund T (2001) The future of PID control. Control Eng Pract 9(11):1163–1175CrossRefGoogle Scholar
  3. 3.
    Åström KJ, Hägglund T (1995) PID controllers: theory, design and tuning, 2nd edn. Instrument Society of America, North CarolinaGoogle Scholar
  4. 4.
    Åström KJ, Wittenmark B (1973) On self tuning regulators. Automatica 9(2):185–199CrossRefzbMATHGoogle Scholar
  5. 5.
    Åström KJ, Hägglund T, Hang CC, Ho WK (1993) Automatic tuning and adaptation for PID controllers–a survey. Control Eng Pract 1(4):699–714Google Scholar
  6. 6.
    Åström KJ, Hang CC, Lim BC (1994) A new Smith predictor for controlling a process with an integrator and long dead time. IEEE Trans Autom Control 39(2):343–345CrossRefGoogle Scholar
  7. 7.
    Buxbaum A (1967) Berechnung von regelkreisen der antriebstechnik. Frankfurt am Main, AEG–Telefunken AG, BerlinGoogle Scholar
  8. 8.
    Buxbaum A, Schierau K, Straughen A (1990) Design of control systems for DC drives. Springer, BerlinCrossRefzbMATHGoogle Scholar
  9. 9.
    Courtiol B, Landau ID (1975) High speed adaptation system for controlled electrical drives. Automatica 11(2):119–127CrossRefGoogle Scholar
  10. 10.
    Doyle CJ, Francis BA, Tannenbaum AR (2009) Feedback control theory. Dover Publications, New YorkGoogle Scholar
  11. 11.
    Föllinger O (1994) Regelungstechnik. Hüthig, HeidelbergGoogle Scholar
  12. 12.
    Fröhr F, Orttenburger F (1982) Introduction to electronic control engineering. Siemens, BerlinGoogle Scholar
  13. 13.
    Gunter S (2003) Respect the unstable. IEEE Control Syst Mag 23(4):12–25CrossRefGoogle Scholar
  14. 14.
    Helton JW, Merino O (1998) Classical control using \(H_\infty \) methods. SIAM: Society for Industrial and Applied Mathematics, PhiladelphiaCrossRefGoogle Scholar
  15. 15.
    Ho MT (2003) Synthesis of \(H_\infty \) PID controllers: a parametric approach. Automatica 39(6):1069–1075CrossRefzbMATHMathSciNetGoogle Scholar
  16. 16.
    Isaksson AJ, Graebe SF (1999) Analytical PID parameter expressions for higher order system. Automatica 35(6):1121–1130CrossRefzbMATHMathSciNetGoogle Scholar
  17. 17.
    Kessler C (1955) UG ber die Vorausberechnung optimal abgestimmter regelkreise teil III. Die optimale einstellung des reglers nach dem betragsoptimum. Regelungstechnik 3:40–49Google Scholar
  18. 18.
    Kessler C (1958) Das Symmetrische Optimum. Regelungstechnik, pp 395–400 and 432–426Google Scholar
  19. 19.
    Loron L (1997) Tuning of PID controllers by the non-symmetrical optimum method. Automatica 33(1):103–107CrossRefzbMATHGoogle Scholar
  20. 20.
    Margaris NI (2003) Lectures in applied automatic control (in Greek), 1st edn. TziolasGoogle Scholar
  21. 21.
    Mataušek MR, Micić AD (1999) On the modified Smith predictor for controlling a process with an integrator and long dead-time. IEEE Trans Autom Control 44(8):1603–1606CrossRefzbMATHGoogle Scholar
  22. 22.
    Morari M, Zafiriou E (1989) Robust process control, 1st edn. Prentice-Hall, New JerseyGoogle Scholar
  23. 23.
    Oldenbourg RC, Sartorius H (1954) A uniform approach to the optimum adjustment of control loops. Trans ASME 76:1265–1279Google Scholar
  24. 24.
    Papadopoulos KG, Margaris NI (2012) Extending the symmetrical optimum criterion to the design of PID type-p control loops. J Process Control 12(1):11–25CrossRefGoogle Scholar
  25. 25.
    Papadopoulos KG, Papastefanaki EN, Margaris NI (2011) Optimal tuning of PID controllers for type-III control loops. In: 19th Mediterranean conference on control & automation (MED). IEEE, Corfu, Greece, pp 1295–1300Google Scholar
  26. 26.
    Papadopoulos KG, Papastefanaki EN, Margaris NI (2012) Automatic tuning of PID type-III control loops via the symmetrical optimum criterion. In: International conference on industrial technology, (ICIT). IEEE, Athens, Greece, pp 881–886Google Scholar
  27. 27.
    Poulin E, Pomerleau A (1999) PI settings for integrating processes based on ultimate cycle information. IEEE Trans Control Syst Technol 7(4):509–511CrossRefGoogle Scholar
  28. 28.
    Preitl S, Precup RE (1999) An extension of tuning relation after symmetrical optimum method for PI and PID controllers. Automatica 35(10):1731–1736CrossRefzbMATHGoogle Scholar
  29. 29.
    Sartorius H (1945) Die zweckmässige festlegung der frei wählbaren regelungskonstanten. Master thesis, Technische Hochscule, Stuttgart, GermanyGoogle Scholar
  30. 30.
    Skogestad S, Postlethwaite I (2005) Multivariable feedback control: analysis and design. Wiley, New YorkGoogle Scholar
  31. 31.
    Smith OJM (1959) Closed control of loops with dead-time. Chem Eng Sci 53:217–219Google Scholar
  32. 32.
    Stojić MR, Matijević MS, Draganović LS (2001) A robust Smith predictor modified by internal models for integrating process with dead time. IEEE Trans Autom Control 46(8):1293–1298CrossRefzbMATHGoogle Scholar
  33. 33.
    Umland WJ, Safiuddin M (1990) Magnitude and symmetric optimum criterion for the design of linear control systems: what is it and how does it compare with the others? IEEE Trans Ind Appl 26(3):489–497CrossRefGoogle Scholar
  34. 34.
    Voda AA, Landau ID (1995) A method for the auto-calibration of PID controllers. Automatica 31(1):41–53CrossRefzbMATHMathSciNetGoogle Scholar
  35. 35.
    Vrančić D (1997) Design of anti-windup and bumpless transfer protection. PhD thesis, University of Ljubljana, Faculty of Electrical Engineering, LjubljanaGoogle Scholar
  36. 36.
    Vrančić D, Peng YSS (1999) A new PID controller tuning method based on multiple integrations. Control Eng Pract 7(5):623–633CrossRefGoogle Scholar
  37. 37.
    Vrančić D, Strmčnik S (1999) Practical guidelines for tuning PID controllers by using MOMI method. In: International symposium on industrial electronics, IEEE, vol 3, pp 1130–1134Google Scholar
  38. 38.
    Washburn DC (1967) Optimization of feedback control loops. Westinghouse Industrial Control SeminarsGoogle Scholar
  39. 39.
    Watanabe K, Ito M (1981) A process model control for linear systems with delay. IEEE Trans Autom Control 26(6):1261–1268CrossRefzbMATHGoogle Scholar
  40. 40.
    Zames G (1981) Feedback and optimal sensitivity: model reference transformations, multiplicative seminorms, and approximate inverses. IEEE Trans Autom Control 26(2):301–320CrossRefzbMATHMathSciNetGoogle Scholar
  41. 41.
    Zhang W, Sun Y, Xu X (1998) Two degree-of-freedom Smith predictor for processes with time delay. Automatica 34(10):1279–1282CrossRefzbMATHGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  1. 1.ATDDABB IndustriesTurgiSwitzerland

Personalised recommendations