Skip to main content

Variational Lie Group Formulation of Geometrically Exact Beam Dynamics: Synchronous and Asynchronous Integration

  • Chapter
  • First Online:
Multibody Dynamics

Part of the book series: Computational Methods in Applied Sciences ((COMPUTMETHODS,volume 35))

Abstract

For the elastodynamic simulation of a geometrically exact beam [1], an asynchronous variational integrator (AVI) [2] is derived from a PDE viewpoint. Variational integrators are symplectic and conserve discrete momentum maps and since the presented integrator is derived in the Lie group setting (\(SO(3)\) for the representation of rotational degrees of freedom), it intrinsically preserves the group structure without the need for constraints [3]. The discrete Euler-Lagrange equations are derived in a general manner and then applied to the beam. A decrease of computational cost is to be expected in situations, where the time steps have to be very low in certain parts of the beam but not everywhere, e.g. if some regions of the beam are moving faster than others. The implementation allows synchronous as well as asynchronous time stepping and shows very good energy behavior, i.e. there is no drift of the total energy for conservative systems.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    The symbol ‘:’ represents a scalar matrix-matrix product with the summation over two indices, i.e. \(A{:}B=A_{ij}B_{ij}\in \mathbb {R}\) for two matrices of matching dimension.

  2. 2.

    Note that \(\dfrac{\partial \left( \cdot \right) }{\partial q}\) denotes \(\dfrac{\partial \left( \cdot \right) }{\partial x}\) and 2\(\left[ \left( \Lambda ^T\dfrac{\partial \left( \cdot \right) }{\partial \Lambda }\right) ^{(A)}\right] ^{\vee }\), respectively.

  3. 3.

    Of course, other evaluations of the Lagrangian depending on a different number or combinations of nodes are possible, as e.g. an evaluation at midpoints of nodes in the first argument of \(L\) (cf. [18]).

  4. 4.

    The unit of the Lagrangian density is \(\mathrm {\dfrac{J}{m}} = N\), i.e. energy per length. Therefore, the units for the conjugate momenta are

    $$\begin{aligned} \left[ \Pi \right]&= \mathrm {\dfrac{Ns}{m}} = \mathrm {\dfrac{\dfrac{kgm^2}{s}}{m}}&\left[ \Gamma \right]&= \mathrm {\dfrac{Ns}{m}} = \mathrm {\dfrac{\dfrac{kgm}{s}}{m}}&\left[ \Sigma \right]&= \mathrm {Nm}&\left[ \sigma \right]&= \mathrm {N} .\end{aligned}$$

References

  1. Antmann SS (1995) Nonlinear problems in elasticity. Springer

    Google Scholar 

  2. Lew A, Marsden JE, Ortiz M, West M (2003) Asynchronous variational integrators. Arch Ration Mech Anal 167(2):85–146

    Article  MATH  MathSciNet  Google Scholar 

  3. Lee T, Leok M, McClamroch NH (2007) Lie group variational integrators for the full body problem. Comput Methods Appl Mech Eng 196(29–30):2907–2924

    Article  MATH  MathSciNet  Google Scholar 

  4. Hairer E, Lubich C, Wanner G (2002) Geometric numerical integration, volume 31 of Springer series in computational mathematics. Springer

    Google Scholar 

  5. Marsden JE, West M (2001) Discrete mechanics and variational integrators. Acta Numer 10:357–514

    Article  MATH  MathSciNet  Google Scholar 

  6. Lew A, Marsden JE, Ortiz M, West M (2004) An overview of variational integrators. Finite element methods: 1970’s and beyond, pp 98–115

    Google Scholar 

  7. Lew A, Marsden JE, Ortiz M, West M (2004) Variational time integrators. Int J Numer Methods Eng 60(1):153–212

    Article  MATH  MathSciNet  Google Scholar 

  8. Ober-Blöbaum S, Junge O, Marsden JE (2008) Discrete mechanics and optimal control: an analysis. ESAIM: Control Optim Calc Var 17(2):322–352. arXiv:0810.1386

  9. Kane C, Marsden JE, Ortiz M, West M (1999) Variational integrators and the Newmark algorithm for conservative and dissipative mechanical systems. Int J Numer Methods Eng 49(10):1295–1325

    Article  MathSciNet  Google Scholar 

  10. Leyendecker S, Marsden JE, Ortiz M (2008) Variational integrators for constrained dynamical systems. ZAMM: J Appl Math Mech/Zeitschrift für Angewandte Mathematik und Mechanik 88(9):677–708

    Article  MATH  MathSciNet  Google Scholar 

  11. Leyendecker S, Ober-Blöbaum S, Marsden JE, Ortiz M (2010) Discrete mechanics and optimal control for constrained systems. Optimal Control Appl Methods 31(6):505–528

    Article  MATH  MathSciNet  Google Scholar 

  12. Kobilarov M, Marsden JE, Sukhatme GS (2010) Geometric discretization of nonholonomic systems with symmetries. Discrete Continuous Dyn Syst: Series S 1(1):61–84

    MathSciNet  Google Scholar 

  13. Fetecau RC, Marsden JE (2003) Nonsmooth Lagrangian mechanics and variational collision integrators. SIAM J Appl Dyn Syst 3(2):381–416

    Article  MathSciNet  Google Scholar 

  14. Bou-Rabee N, Owhadi H (2008) Stochastic variational integrators. IMA J Numer Anal 29(2):421–443

    Article  MathSciNet  Google Scholar 

  15. Tao M, Owhadi H, Marsden JE (2010) Non-intrusive and structure preserving multiscale integration of stiff ODEs, SDEs and Hamiltonian systems with hidden slow dynamics via flow averaging. Multiscale Model Simul 8(4):1269–1324

    Article  MATH  MathSciNet  Google Scholar 

  16. Leyendecker S, Ober-Blöbaum S (2013) A variational approach to multirate integration for constrained systems. Comput Methods Appl Sci 28:97–121

    Article  Google Scholar 

  17. Ober-Blöbaum S, Tao M, Cheng M, Owhadi H, Marsden JE (2011) Variational integrators for electric circuits. J Comput Phys 242:498–530

    Article  Google Scholar 

  18. Marsden JE, Patrick GW, Shkoller S (1998) Multisymplectic geometry, variational integrators, and nonlinear PDEs. Commun Math Phys 199:351–395

    Article  MATH  MathSciNet  Google Scholar 

  19. Vankerschaver J, Liao C, Leok M (2011) Generating functionals and Lagrangian PDEs. J Nonlinear Sci (submitted, Marsden memorial issue, invited paper, arXiv:1111.0280)

  20. Kale KG, Lew AJ (2007) Parallel asynchronous variational integrators. Int J Numer Methods Eng 70:291–321

    Article  MATH  MathSciNet  Google Scholar 

  21. Focardi M, Mariano PM (2008) Convergence of asynchronous variational integrators in linear elastodynamics. Int J Numer Meth Eng 75(7):755–769

    Article  MATH  MathSciNet  Google Scholar 

  22. Beneš M, Matoušlew K (2010) Asynchronous multi-domain variational integrators for nonlinear hyperelastic solids. Comput Methods Appl Mech Eng 199(29–32):1992–2013

    Google Scholar 

  23. Vouga E, Harmon D, Tamstorf R, Grinspun E (2010) Asynchronous variational contact mechanics. arXiv:1007.3240

  24. Wolff S, Bucher C (2013) Asynchronous variational integration using continuous assumed gradient elements. Comput Methods Appl Mech Eng 255(C):158–166

    Article  MathSciNet  Google Scholar 

  25. Crouch PE, Grossman R (1993) Numerical integration of ordinary differential equations on manifolds. J Nonlinear Sci 3(1):1–33

    Article  MATH  MathSciNet  Google Scholar 

  26. Munthe-Kaas H (1998) Runge-Kutta methods on Lie groups. BIT Numer Math 38(1):92–111

    Article  MATH  MathSciNet  Google Scholar 

  27. Iserles A, Munthe-Kaas HZ, Nørsett SP, Zanna A (2000) Lie-group methods. Acta Numerica 9:215–365

    Google Scholar 

  28. Bobenko AI, Suris YB (1999) Discrete Lagrangian reduction, discrete Euler-Poincaré equations, and semidirect products. Lett Math Phys 49(1):79–93

    Article  MATH  MathSciNet  Google Scholar 

  29. Bobenko AI, Suris YB (1999) Discrete time Lagrangian mechanics on Lie groups, with an application to the Lagrange top. Commun Math Phys 204:147–188

    Article  MATH  MathSciNet  Google Scholar 

  30. Marsden JE, Pekarsky S, Shkoller S (1999) Discrete Euler-Poincaré and Lie-Poisson equations. Nonlinearity 12:1647–1662

    Article  MATH  MathSciNet  Google Scholar 

  31. Lee T (2008) Computational geometric mechanics and control of rigid bodies. PhD thesis, University of Michigan

    Google Scholar 

  32. Bou-Rabee N, Marsden JE (2009) Hamilton-Pontryagin integrators on Lie groups: introduction and structure-preserving properties. Found Comput Math 9(2):197–219

    Article  MATH  MathSciNet  Google Scholar 

  33. Celledoni E, Marthinsen H, Owren B (2014) An introduction to Lie group integrators—basics, new developments and applications. J Comput Phys 257:1040–1061

    Article  MathSciNet  Google Scholar 

  34. Lee T, Leok M, McClamroch NH (2007) Lie group variational integrators for the full body problem in orbital mechanics. Celest Mech Dyn Astron 98(2):121–144

    Article  MATH  MathSciNet  Google Scholar 

  35. Demoures F (2012) Lie group and Lie algebra variational integrators for flexible beam and plate in \(\mathbb{R}^3\). PhD thesis, École Polytechnique Fédérale de Lausanne, Lausanne

    Google Scholar 

  36. Demoures F, Gay-Balmaz F, Leitz T, Leyendecker S, Ober-Blöbaum S, Ratiu TS (2013) Asynchronous variational lie group integration for geometrically exact beam dynamics. In: ECCOMAS Thematic conference on mutlibody, Dynamics, 1–4 July 2013

    Google Scholar 

  37. Simo JC (1985) A finite strain beam formulation. the three-dimensional dynamic problem. Part I. Comput Methods Appl Mech Eng 49(1):55–70

    Article  MATH  MathSciNet  Google Scholar 

  38. Jelenić G, Crisfield MA (1998) Interpolation of rotational variables in non-linear dynamics of \(3\)d beams. Int J Numer Methods Eng 43:1193–1222

    Article  MATH  Google Scholar 

  39. Ibrahimbegović A, Mamouri S (1998) Finite rotations in dynamics of beams and implicit time-stepping schemes. Int J Numer Methods Eng 41:781–814

    Article  MATH  Google Scholar 

  40. Crisfield MA, Jelenić G (1999) Objectivity of strain measures in the geometrically exact three-dimensional beam theory and its finite-element implementation. Proc Royal Soc London. Series A: Math Phys Eng Sci 455(1983):1125–1147

    Google Scholar 

  41. Romero I, Armero F (2002) An objective finite element approximation of the kinematics of geometrically exact rods and its use in the formulation of an energymomentum conserving scheme in dynamics. Int J Numer Methods Eng 54(12):1683–1716

    Article  MATH  MathSciNet  Google Scholar 

  42. Betsch P, Steinmann P (2002) Frame-indifferent beam finite elements based upon the geometrically exact beam theory. Int J Numerical Meth Eng 54:1775–1788

    Article  MATH  MathSciNet  Google Scholar 

  43. Romero I (2004) The interpolation of rotations and its application to finite element models of geometrically exact rods. Comput Mech 34(2):121–133

    Article  MATH  MathSciNet  Google Scholar 

  44. Betsch P, Menzel A, Stein E (1998) On the parametrization of finite rotations in computational mechanics: a classification of concepts with application to smooth shells. Comput Methods Appl Mech Eng 155:273–305

    Article  MATH  MathSciNet  Google Scholar 

  45. Ibrahimbegović A, Frey F, Kozar I (1995) Computational aspects of vector-like parametrization of three-dimensional finite rotations. Int J Numer Methods Eng 38:3653–3673

    Article  MATH  Google Scholar 

  46. Jelenić G, Crisfield MA (1999) Geometrically exact \(3\)d beam theory: implementation of a strain-invariant finite element for statics and dynamics. Comput Methods Appl Mech Eng 171:141–171

    Article  MATH  Google Scholar 

  47. Jelenić G, Crisfield MA (2002) Problems associated with the use of Cayley transform and tangent scaling for conserving energy and momenta in the Reissner-Simo beam theory. Commun Numer Methods Eng 18:711–720

    Article  MATH  Google Scholar 

  48. Bottasso CL, Borri M, Trainelli L (2002) Geometric invariance. Comput Mech 29:163–169

    Article  MATH  MathSciNet  Google Scholar 

  49. Shabana A (1998) Dynamics of multibody systems. Cambridge University Press

    Google Scholar 

  50. Shabana A, Yakoub RY (2001) Three dimensional absolute nodal coordinate formulation for beam elements: theory. ASME J Mech Des 123:606–613

    Article  Google Scholar 

  51. Brüls O, Cardona A (2010) On the use of Lie group time integrators in multibody dynamics. J Comput Nonlinear Dyn 5

    Google Scholar 

  52. Brüls O, Cardona A, Arnold M (2012) Lie group generalized-\(\alpha \) time integration of constrained flexible multibody systems. Mech Mach Theory 48:121–137

    Article  Google Scholar 

  53. Simo JC, Vu-Quoc L (1986) A three-dimensional finite-strain rod model. Part II: computational aspects. Comput Methods Appl Mech Eng 58:79–116

    Article  MATH  Google Scholar 

  54. Simo JC, Vu-Quoc L (1988) On the dynamics in space of rods undergoing large motions—a geometrically exact approach. Comput Methods Appl Mech Eng 66:125–161

    Article  MATH  MathSciNet  Google Scholar 

  55. Simo JC, Marsden JE, Krishnaprasad PS (1987) The Hamiltonian structure of nonlinear elasticity: the material and convective representations of solids, rods, and plates. Arch Ration Mech Anal 104:125–183

    MathSciNet  Google Scholar 

  56. Walther A, Kowarz A, Griewank A (1996) ADOL-C: a package for the automatic differentiation of algorithms written in C/C++. Assoc Comput Mach Trans Math Softw (ACM TOMS) 22(2):131–167

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sigrid Leyendecker .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Leitz, T., Ober-Blöbaum, S., Leyendecker, S. (2014). Variational Lie Group Formulation of Geometrically Exact Beam Dynamics: Synchronous and Asynchronous Integration. In: Terze, Z. (eds) Multibody Dynamics. Computational Methods in Applied Sciences, vol 35. Springer, Cham. https://doi.org/10.1007/978-3-319-07260-9_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-07260-9_8

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-07259-3

  • Online ISBN: 978-3-319-07260-9

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics