Skip to main content

Multilayered, Blocked Formal Concept Analyses for Adaptive Image Compression

  • Conference paper
  • 619 Accesses

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 8478))

Abstract

Formal Concept Analysis (FCA) decomposes a matrix into a set of sparse matrices capturing its underlying structure. A similar task for real-valued data, transform coding, arises in image compression. Existing cosine transform coding for JPEG image compression uses a fixed, decorrelating transform; however, compression is limited as images rarely consist of pure cosines. The question remains whether an FCA adaptive transform can be applied to image compression. We propose a multi-layer FCA (MFCA) adaptive ordered transform and Sequentially Sifted Linear Programming (SSLP) encoding pair for adaptive image compression. Our hypothesis is that MFCA’s sparse linear codes (closures) for natural scenes, are a complete family of ordered, localized, oriented, bandpass receptive fields, predicted by models of the primary visual cortex. Results on real data demonstrate that adaptive compression is feasible. These initial results may play a role in improving compression rates and extending the applicability of FCA to real-valued data.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Chen, S.S., Donoho, D., Saunders, M.A.: Atomic decomposition by basis pursuit. SIAM J. Scientific Computing 20, 33–61 (1998)

    Article  MathSciNet  Google Scholar 

  2. Mallat, S.: A Wavelet Tour of Signal Processing, The Sparse Way, 3rd edn. Academic Press (2008)

    Google Scholar 

  3. Lewicki, M.S., Sejnowski, T.J., Hughes, H.: Learning overcomplete representations. Neural Computation 12, 337–365 (1998)

    Article  Google Scholar 

  4. Lewicki, M.S., Olshausen, B.A.: A probabilistic framework for the adaptation and comparison of image codes. J. Opt. Soc. Am. A 16, 1587–1601 (1999)

    Article  Google Scholar 

  5. Olshausen, B.A., Field, D.J.: Emergence of simple-cell receptive field properties by learning a sparse code for natural images. Nature 381(6583), 607–609 (1996)

    Article  Google Scholar 

  6. Olshausen, B.O., Fieldt, D.J.: Sparse coding with an overcomplete basis set: a strategy employed by V1. Vision Research 37, 3311–3325 (1997)

    Article  Google Scholar 

  7. Rubinstein, R., Bruckstein, A.M., Elad, M.: Dictionaries for Sparse Representation Modeling. Proceedings of the IEEE 98(6), 1045–1057 (2010)

    Article  Google Scholar 

  8. Ganter, B., Wille, R.: Formal Concept Analysis: Mathematical Foundations. Springer, Heidelberg (1999)

    Book  MATH  Google Scholar 

  9. Horev, I., Bryt, O., Rubinstein, R.: Adaptive image compression using sparse dictionaries. In: 19th Int. Conf. Sys., Sig. and Im. Process., pp. 592–595 (2012)

    Google Scholar 

  10. Pennebacker, W.B., Mitchell, J.L.: JPEG still image data compression standard. Springer, New York (1993)

    Google Scholar 

  11. Taubman, D.S., Marcellin, M.: JPEG2000: image compression fundamentals, standards and practice. Kluwer Academic Publishers, Norwell (2001)

    Google Scholar 

  12. Ahmed, N., Natarajan, T., Rao, K.R.: Discrete Cosine Transform. IEEE Trans. Computers C-32, 90–93 (1974)

    Article  MathSciNet  Google Scholar 

  13. Jolliffe, I.T.: Principal Component Analysis, 2nd edn. Springer Series in Statistics (October 2002)

    Google Scholar 

  14. de Fréin, R.: Ghostbusters: A Parts-based NMF Algorithm. In: 24th IET Irish Signals and Systems Conference, pp. 1–8 (June 2013)

    Google Scholar 

  15. de Fréin, R.: Formal concept analysis via atomic priming. In: Cellier, P., Distel, F., Ganter, B. (eds.) ICFCA 2013. LNCS, vol. 7880, pp. 92–108. Springer, Heidelberg (2013)

    Chapter  Google Scholar 

  16. Bryt, O., Elad, M.: Compression of facial images using the K-SVD algorithm. Journal of Visual Communication and Image Representation 19(4), 270–283 (2008)

    Article  Google Scholar 

  17. Howard, P.G., Vitter, J.S.: Arithmetic coding for data compression. Proceedings of the IEEE 82(6) (June 1994)

    Google Scholar 

  18. de Fréin, R., Rickard, S.T.: The synchronized short-time-Fourier-transform: Properties and definitions for multichannel source separation. IEEE Trans. Sig. Proc. 59(1), 91–103 (2011)

    Article  Google Scholar 

  19. Lee, D.D., Seung, H.S.: Algorithms for non-negative matrix factorization. In: NIPS, pp. 556–562. MIT Press (2000)

    Google Scholar 

  20. Elad, M.: Sparse and redundant representations - from theory to applications in signal and image processing. Springer (2010)

    Google Scholar 

  21. Mallat, S., Zhang, Z.: Matching pursuits with time-frequency dictionaries. IEEE Trans. Sig. Proc. 41(12) (1993)

    Google Scholar 

  22. Ganter, B.: Two Basic Algorithms in Concept Analysis. In: Kwuida, L., Sertkaya, B. (eds.) ICFCA 2010. LNCS, vol. 5986, pp. 312–340. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  23. Lindig, C.: Fast Concept Analysis. Working with Conceptual Structures-Contributions to ICCS, pp. 235–248 (2000)

    Google Scholar 

  24. Kuznetsov, S.O.: A Fast Algorithm for Computing All Intersections of Objects in a Finite Semi-Lattice. Auto. Doc. and Math. Linguistics 27(5), 11–21 (1993)

    Google Scholar 

  25. Andrews, S.: In-Close, a Fast Algorithm for Computing Formal Concepts. In: The Seventeenth International Conference on Conceptual Structures (2009)

    Google Scholar 

  26. Vychodil, V.: A New Algorithm for Computing Formal Concepts. In: Cybernetics and Systems, pp. 15–21 (2008)

    Google Scholar 

  27. Krajca, P., Outrata, J., Vychodil, V.: Parallel Recursive Algorithm for FCA. In: CLA 2008, vol. 433, pp. 71–82 (2008)

    Google Scholar 

  28. Kuznetsov, S.O., Obiedkov, S.A.: Comparing Performance of Algorithms for Generating Concept Lattices. J. Exper. & Th. Artif. Intell. 14, 189–216 (2002)

    Article  MATH  Google Scholar 

  29. Bordat, J.-P.: Calcul pratique du treillis de Galois d’une correspondance. Mathématiques et Sciences Humaines 96, 31–47 (1986)

    MATH  MathSciNet  Google Scholar 

  30. Berry, A., Bordat, J.-P., Sigayret, A.: A Local Approach to Concept Generation. Annals of Mathematics and Artificial Intelligence 49(1), 117–136 (2006)

    MathSciNet  Google Scholar 

  31. Norris, E.M.: An Algorithm for Computing the Maximal Rectangles in a Binary Relation. Rev. Roum. Math. Pures et Appl. 23(2), 243–250 (1978)

    MATH  MathSciNet  Google Scholar 

  32. Dowling, C.E.: On the Irredundant Generation of Knowledge Spaces. J. Math. Psychol. 37, 49–62 (1993)

    Article  MATH  MathSciNet  Google Scholar 

  33. Godin, R., Missaoui, R., Alaoui, H.: Incremental Concept Formation Algorithms Based on Galois (Concept) Lattices. Computational Intelligence 11, 246–267 (1995)

    Article  Google Scholar 

  34. Carpineto, C., Romano, G.: A Lattice Conceptual Clustering System and Its Application to Browsing Retrieval. Machine Learning, 95–122 (1996)

    Google Scholar 

  35. Valtchev, P., Missaoui, R., Lebrun, P.: A Partition-based Approach Towards Constructing Galois (concept) Lattices. Discrete Math., 801–829 (2002)

    Google Scholar 

  36. Yu, Y., Qian, X., Zhong, F., Li, X.R.: An Improved Incremental Algorithm for Constructing Concept Lattices. In: Soft. Eng., World Congress, vol. 4, pp. 401–405 (2009)

    Google Scholar 

  37. Krajca, P., Vychodil, V.: Distributed Algorithm for Computing Formal Concepts Using Map-Reduce Framework. In: Adams, N.M., Robardet, C., Siebes, A., Boulicaut, J.-F. (eds.) IDA 2009. LNCS, vol. 5772, pp. 333–344. Springer, Heidelberg (2009)

    Chapter  Google Scholar 

  38. Dean, J., Ghemawat, S.: MapReduce: Simplified Data Processing on Large Clusters. In: OSDI, p. 13 (2004)

    Google Scholar 

  39. Xu, B., de Fréin, R., Robson, E., Ó Foghlú, M.: Distributed Formal Concept Analysis Algorithms Based on an Iterative MapReduce Framework. In: Domenach, F., Ignatov, D.I., Poelmans, J. (eds.) ICFCA 2012. LNCS, vol. 7278, pp. 292–308. Springer, Heidelberg (2012)

    Chapter  Google Scholar 

  40. Ekanayake, J., Li, H., Zhang, B., Gunarathne, T., Bae, S.H., Qiu, J., Fox, G.: Twister: a Runtime for Iterative MapReduce. In: HPDC 2010, pp. 810–818. ACM (2010)

    Google Scholar 

  41. Belohlavek, R., Glodeanu, C., Vychodil, V.: Optimal factorization of three-way binary data using triadic concepts. Order 30(2), 437–454 (2013)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this paper

Cite this paper

de Fréin, R. (2014). Multilayered, Blocked Formal Concept Analyses for Adaptive Image Compression. In: Glodeanu, C.V., Kaytoue, M., Sacarea, C. (eds) Formal Concept Analysis. ICFCA 2014. Lecture Notes in Computer Science(), vol 8478. Springer, Cham. https://doi.org/10.1007/978-3-319-07248-7_18

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-07248-7_18

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-07247-0

  • Online ISBN: 978-3-319-07248-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics