Skip to main content

Coupling of Numeric/Symbolic Reduction Methods for Generating Parametrized Models of Nanoelectronic Systems

  • Chapter
  • First Online:
System Reduction for Nanoscale IC Design

Part of the book series: Mathematics in Industry ((MATHINDUSTRY,volume 20))

  • 510 Accesses

Abstract

This chapter presents new strategies for the analysis and model order reduction of systems of ever-growing size and complexity by exploiting the hierarchical structure of analog electronical circuits. Thereby, the entire circuit is considered as a system of interconnected subcircuits. Given a prescribed error-bound for the reduction process, a newly developed algorithm tries to achieve a maximal reduction degree for the overall system by choosing the reduction degrees of the subcircuits in a convenient way. The individual subsystem reductions with respect to their prescribed error-bound are then performed using different reduction techniques. Combining the reduced subsystems a reduced model of the overall system results. Finally, the usability of the new techniques is demonstrated on two circuit examples typically used in industrial applications.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    For doing it best, we first have to determine the voltage and current sources of the circuit that can act as inputs. Thus, the corresponding independent value of each port has to be considered as output. If you connect a voltage source at a port p this would be the current through port p, and vice versa.

    For simplicity, we use here voltage sources as inputs and the currents as outputs. Besides of that, it turns out that residual based solvers simulate analog circuits containing transistors faster and more accurate if the voltages are given at the circuit’s ports instead of the currents.

  2. 2.

    Assume we are dealing with systems of DAEs. If PDEs are involved, apply a semidiscretization w.r.t. the spatial coordinates.

  3. 3.

    See Remarks 4.2.2.

  4. 4.

    Minimal with respect to the corresponding error \(E(y,y_{\,\,\widetilde{T}_{ i}^{(\,j)}})\).

  5. 5.

    For a vector X = (x 1, , x n ), deleting the entry x i in X means, that a vector \(\tilde{X} = (x_{1},\ldots,x_{i-1},x_{i+1},\ldots,x_{n})\) of dimension n − 1 results.

  6. 6.

    The computations are performed on a Dual Quad Xeon E5420 with 2.5 MHz and 16 GB RAM.

  7. 7.

    A term ranking is a trade-off between accuracy and efficiency in computation time that estimates the influence of a term in a system of equations on its solution. Here, however, we use full simulations instead of low-accuracy estimates. For more details see [20].

  8. 8.

    Due to the structure preserving reduction method, the resulting reduced model contains equations connecting the models of the subcircuits, that can be avoided, like: Voltage of node 24 of subcircuit LS is equal to the voltage of node 24 of subcircuit PP.

    Unifying the corresponding variables (i.e. V$24$LS and V$24$PP) yields a decrease of the number of equations.

References

  1. Analog Insydes website: http://www.itwm.fraunhofer.de/abteilungen/systemanalyse-prognose- und-regelung/elektronik-mechanik-mechatronik/analog-insydes.html

  2. Antoulas, A.C.: Approximation of Large-Scale Dynamical Systems. SIAM, Philadelphia, PA (2005)

    Book  MATH  Google Scholar 

  3. Bai, Z.: Krylov subspace techniques for reduced-order modeling of large-scale dynamical systems. Appl. Numer. Math. 43, 9–44 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  4. Feng, L., Benner, P.: A robust algorithm for parametric model order reduction. Proc. Appl. Math. Mech. 7(1), 1021501–1021502 (2007)

    Article  Google Scholar 

  5. Grabinski, H.: Theorie und Simulation von Leitbahnen. Signalverhalten auf Leitungssystemen in der Mikroelektronik. Springer, Berlin (1991)

    Book  Google Scholar 

  6. Günther, M.: A Joint DAE/PDE model for interconnected electrical networks. Math. Comput. Model. Dyn. Syst. 6(2), 114–128 (2000)

    Article  MATH  Google Scholar 

  7. Günther, M.: Partielle differential-algebraische Systeme in der numerischen Zeitbereichsanalyse elektrischer Schaltungen. Fortschritt-Berichte VDI, Reihe 20, Nr. 343. VDI-Verlag, Düsseldorf (2001)

    Google Scholar 

  8. Halfmann, T., Wichmann, T.: Symbolic methods in industrial analog circuit design. In: Anile, A., Alì, G., Mascali, G. (eds.) Scientific Computing in Electrical Engineering. Mathematics in Industry, vol. 9, pp. 87–92. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  9. Hauser, M., Salzig, C.: Hierarchical model-order reduction for robust design of parameter-varying systems. In: Symbolic and Numerical Methods, Modeling and Applications to Circuit Design (SMACD) (2012)

    Google Scholar 

  10. Hennig, E.: Symbolic Approximation and Modeling Techniques for Analysis and Design of Analog Circuits. Ph.D. Thesis, Universität Kaiserslautern, Shaker, Aachen (2000)

    Google Scholar 

  11. Miri, A.M.: Ausgleichsvorgänge in Elektroenergiesystemen. Springer, Berlin (2000)

    Book  Google Scholar 

  12. Panzer, H., Mohring, J., Eid, R., Lohmann, B.: Parametric model order reduction by matrix interpolation. Automatisierungstechnik 58, 475–484 (2010)

    Article  Google Scholar 

  13. Pelz, G., Roettcher, U.: Pattern matching and refinement hybrid approach to circuit comparison. IEEE Trans. Comput.-Aided Des. Integr. Circuits Syst. 13, 264–276 (1994)

    Article  Google Scholar 

  14. Reis, T., Stykel, T.: PABTEC: passivity-preserving balanced truncation for electrical circuits. IEEE Trans. Comput.-Aided Des. Integr. Circuits Syst. 29, 1354–1367 (2010)

    Article  Google Scholar 

  15. Sommer, R., Hennig, E., Nitsche, G., Schwarz, P., Broz, J.: Automatic Nonlinear Behavioral Model Generation Using Symbolic Circuit Analysis. In: Fakhfakh, M., Tlelo-Cuautle, E., Fernández, F.V. (eds.) Design of Analog Circuits through Symbolic Analysis, pp. 305–341. Bentham Science Publishers, Sharjah (2012). doi:10.2174/978160805095611201010305

    Google Scholar 

  16. Schmidt, O.: Structure-Exploiting Coupled Symbolic-Numerical Model Reduction for Electrical Networks. Dissertation, Technische Universität Kaiserslautern, Cuvillier, Göttingen (2010)

    Google Scholar 

  17. Schmidt, O.: Structure-exploiting symbolic-numerical model reduction of nonlinear electrical circuits. In: Proceedings der 16th European Conference on Mathematics for Industry ECMI 2010, Wuppertal. Mathematics in Industry, vol. 17, pp. 179–185. Springer, Berlin (2010)

    Google Scholar 

  18. Schmidt, O., Halfmann, T., Lang, P.: Coupling of numerical and symbolic techniques for model order reduction in circuit design. In: Benner, P., Hinze, M., ter Maten, E.J.W. (eds.) Model Reduction for Circuit Simulation. Lecture Notes in Electrical Engineering, vol. 74, pp. 261–275. Springer, Dordrecht (2011)

    Chapter  Google Scholar 

  19. Sommer, R., Krauße, D., Schäfer, E., Hennig, E.: Application of symbolic circuit analysis for failure detection and optimization of industrial integrated circuits. In: Fakhfakh, M., Tlelo-Cuautle, E., Fernández, F.V. (eds.) Design of Analog Circuits through Symbolic Analysis, pp. 445–477. Bentham Science Publishers, Sharjah (2012). doi:10.2174/978160805095611201010305

    Google Scholar 

  20. Wichmann, T.: Symbolische Reduktionsverfahren für nichtlineare DAE-Systeme. Shaker, Aachen (2004)

    Google Scholar 

  21. Wolfram, S.: The Mathematica Book, 5th edn. Wolfram Media, Inc., Champaign (2003)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Schmidt, O., Hauser, M., Lang, P. (2017). Coupling of Numeric/Symbolic Reduction Methods for Generating Parametrized Models of Nanoelectronic Systems. In: Benner, P. (eds) System Reduction for Nanoscale IC Design. Mathematics in Industry, vol 20. Springer, Cham. https://doi.org/10.1007/978-3-319-07236-4_4

Download citation

Publish with us

Policies and ethics