Skip to main content

Element-Based Model Reduction in Circuit Simulation

  • Chapter
  • First Online:
System Reduction for Nanoscale IC Design

Part of the book series: Mathematics in Industry ((MATHINDUSTRY,volume 20))

  • 524 Accesses

Abstract

In this paper, we consider model reduction of linear and nonlinear differential-algebraic equations arising in circuit simulation. Circuit equations obtained using modified nodal or loop analysis have a ;special structure that can be exploited to construct efficient model reduction algorithms. For linear systems, we review passivity-preserving balanced truncation model reduction methods that are based on solving projected Lur’e or Lyapunov matrix equations. Furthermore, a ;topology-based index-preserving procedure for extracting large linear subnetworks from nonlinear circuits is given. Finally, we describe a ;new MATLAB Toolbox PABTEC for model reduction of circuit equations and present some results of numerical experiments.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    http://www.netlib.org/lyapack/.

  2. 2.

    https://www.mpi-magdeburg.mpg.de/projects/mess

References

  1. Anderson, B., Vongpanitlerd, S.: Network Analysis and Synthesis. Prentice Hall, Englewood Cliffs, NJ (1973)

    Google Scholar 

  2. Andrásfai, B.: Graph Theory: Flows, Matrices. Adam Hilger, New York/Bristol (1991)

    MATH  Google Scholar 

  3. Antoulas, A.: Approximation of Large-Scale Dynamical Systems. SIAM, Philadelphia, PA (2005)

    Book  MATH  Google Scholar 

  4. Antoulas, A.: A new result on passivity preserving model reduction. Syst. Control Lett. 54(4), 361–374 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  5. Antoulas, A., Beattie, C., Gugercin, S.: Interpolatory model reduction of large-scale dynamical systems. In: Mohammadpour, J., Grigoriadis, K. (eds.) Efficient Modeling and Control of Large-Scale Systems, pp. 3–58. Springer, New York (2010)

    Chapter  Google Scholar 

  6. Bai, Z.: Krylov subspace techniques for reduced-order modeling of large-scale dynamical systems. Appl. Numer. Math. 43, 9–44 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  7. Bechtold, T., Verhoeven, A., ter Maten, E., Voss, T.: Model order reduction: an advanced, efficient and automated computational tool for microsystems. In: Cutello, V., Fotia, G., Puccio, L. (eds.) Applied and Industrial Mathematics in Italy II, Selected Contributions from the 8th SIMAI Conference. Advances in Mathematics for Applied Sciences, vol. 75, pp. 113–124. World Scientific, Singapore (2007)

    Google Scholar 

  8. Benner, P.: Numerical solution of special algebraic Riccati equations via exact line search method. In: Proceedings of the European Control Conference (ECC97), paper 786. BELWARE Information Technology, Waterloo (1997)

    Google Scholar 

  9. Benner, P., Quintana-Ortí, E.: Solving stable generalized Lyapunov equations with the matrix sign function. Numer. Algorithms 20(1), 75–100 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  10. Benner, P., Stykel, T.: Numerical solution of projected algebraic Riccati equations. SIAM J. Numer. Anal. 52(2), 581–600 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  11. Benner, P., Quintana-Ortí, E., Quintana-Ortí, G.: Efficient numerical algorithms for balanced stochastic truncation. Int. J. Appl. Math. Comput. Sci. 11(5), 1123–1150 (2001)

    MathSciNet  MATH  Google Scholar 

  12. Benner, P., Hernández, V., Pastor, A.: The Kleinman iteration for nonstabilizable systems. Math. Control Signals Syst. 16, 76–93 (2003)

    MathSciNet  MATH  Google Scholar 

  13. Benner, P., Mehrmann, V., Sorensen, D. (eds.): Dimension Reduction of Large-Scale Systems. Lecture Notes in Computational Science and Engineering, vol. 45. Springer, Berlin/Heidelberg (2005)

    Google Scholar 

  14. Benner, P., Li, J.R., Penzl, T.: Numerical solution of large Lyapunov equations, Riccati equations, and linear-quadratic control problems. Numer. Linear Algebra Appl. 15, 755–777 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  15. Benner, P., Mena, H., Saak, J.: On the parameter selection problem in the Newton-ADI iteration for large-scale Riccati equations. Electron. Trans. Numer. Anal. 29, 136–149 (2008)

    MathSciNet  MATH  Google Scholar 

  16. Benner, P., Kürschner, P., Saak, J.: Efficient handling of complex shift parameters in the low-rank Cholesky factor ADI method. Numer. Algorithms 62(2), 225–251 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  17. Brenan, K., Campbell, S., Petzold, L.: The Numerical Solution of Initial-Value Problems in Differential-Algebraic Equations. Classics in Applied Mathematics, vol. 14. SIAM, Philadelphia, PA (1996)

    Google Scholar 

  18. Chan, T.: Rank revealing QR factorizations. Linear Algebra Appl. 88/89, 67–82 (1987)

    Google Scholar 

  19. Chua, L.: Dynamic nonlinear networks: state-of-the-art. IEEE Trans. Circuits Syst. 27(11), 1059–1087 (1980)

    Article  MathSciNet  MATH  Google Scholar 

  20. Chua, L., Desoer, C., Kuh, E.: Linear and Nonlinear Circuits. McGraw-Hill, New York (1987)

    MATH  Google Scholar 

  21. Dai, L.: Singular Control Systems. Lecture Notes in Control and Information Sciences, vol. 118. Springer, Berlin/Heidelberg (1989)

    Google Scholar 

  22. Deo, N.: Graph Theory with Application to Engineering and Computer Science. Prentice-Hall, Englewood Cliffs, NJ (1974)

    MATH  Google Scholar 

  23. EstévezSchwarz, D.: A step-by-step approach to compute a consistent initialization for the MNA. Int. J. Circuit Theory Appl. 30, 1–16 (2002)

    Article  Google Scholar 

  24. Estévez Schwarz, D., Tischendorf, C.: Structural analysis for electric circuits and consequences for MNA. Int. J. Circuit Theory Appl. 28, 131–162 (2000)

    Article  MATH  Google Scholar 

  25. Freund, R.: Model reduction methods based on Krylov subspaces. Acta Numer. 12, 267–319 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  26. Freund, R.: SPRIM: structure-preserving reduced-order interconnect macromodeling. In: Technical Digest of the 2004 IEEE/ACM International Conference on Computer-Aided Design, pp. 80–87. IEEE Computer Society, Los Alamos, CA (2004)

    Google Scholar 

  27. Freund, R.: Structure-preserving model order reduction of RCL circuit equations. In: Schilders, W., van der Vorst, H., Rommes, J. (eds.) Model Order Reduction: Theory, Research Aspects and Applications. Mathematics in Industry, vol. 13, pp. 49–73. Springer, Berlin/Heidelberg (2008)

    Chapter  Google Scholar 

  28. Golub, G., Van Loan, C.: Matrix Computations, 3rd edn. The Johns Hopkins University Press, Baltimore/London (1996)

    MATH  Google Scholar 

  29. Griepentrog, E., März, R.: Differential-Algebraic Equations and Their Numerical Treatment. Teubner-Texte zur Mathematik, vol. 88. B.G. Teubner, Leipzig (1986)

    Google Scholar 

  30. Grimme, E.: Krylov projection methods for model reduction. Ph.D. thesis, University of Illinois, Urbana-Champaign (1997)

    Google Scholar 

  31. Gugercin, S., Antoulas, A.: A survey of model reduction by balanced truncation and some new results. Int. J. Control 77(8), 748–766 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  32. Gugercin, S., Antoulas, A., Beattie, C.: \(\mathcal{H}_{2}\) model reduction for large-scale linear dynamical systems. SIAM J. Matrix Anal. Appl. 30(2), 609–638 (2008)

    Google Scholar 

  33. Hairer, E., Wanner, G.: Solving Ordinary Differential Equations II - Stiff and Differential-Algebraic Problems, 2nd edn. Springer, Berlin (1996)

    Book  MATH  Google Scholar 

  34. Heinkenschloss, M., Reis, T.: Model reduction for a class of nonlinear electrical circuits by reduction of linear subcircuits. Technical Report 702–2010, DFG Research Center Matheon, Technische Universität Berlin (2010). http://http://www.math.tu-berlin.de/~reis/Publicat/pr_10_702.pdf

  35. Hinze, M., Kunkel, M.: Residual based sampling in pod model order reduction of drift-diffusion equations in parametrized electrical networks. Z. Angew. Math. Mech. 92(2), 91–104 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  36. Hinze, M., Kunkel, M., Steinbrecher, A., Stykel, T.: Model order reduction of coupled circuit-device systems. Int. J. Numer. Model. Electron. Networks Devices Fields 25, 362–377 (2012)

    Article  Google Scholar 

  37. Ho, C.W., Ruehli, A., Brennan, P.: The modified nodal approach to network analysis. IEEE Trans. Circuits Syst. 22(6), 504–509 (1975)

    Article  Google Scholar 

  38. Ionutiu, R., Rommes, J., Antoulas, A.: Passivity-preserving model reduction using dominant spectral-zero interpolation. IEEE Trans. Comput. Aided Des. Integr. Circuits Syst. 27(12), 2250–2263 (2008)

    Article  Google Scholar 

  39. Ipach, H.: Graphentheoretische Anwendungen in der Analyse elektrischer Schaltkreise. Bachelorarbeit, Universität Hamburg (2013)

    Google Scholar 

  40. Jungnickel, D.: Graphs, Network and Algorithms. Springer, Berlin/Heidelberg (2005)

    MATH  Google Scholar 

  41. Kleinman, D.: On an iterative technique for Riccati equation computations. IEEE Trans. Autom. Control 13, 114–115 (1968)

    Article  Google Scholar 

  42. Knockaert, L., De Zutter, D.: Laguerre-SVD reduced-order modeling. IEEE Trans. Microwave Theory Tech. 48(9), 1469–1475 (2000)

    Article  Google Scholar 

  43. Kunkel, P., Mehrmann, V.: Differential-Algebraic Equations. Analysis and Numerical Solution. EMS Publishing House, Zürich (2006)

    Book  MATH  Google Scholar 

  44. Li, J.R., White, J.: Low rank solution of Lyapunov equations. SIAM J. Matrix Anal. Appl. 24(1), 260–280 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  45. Liu, W., Sreeram, V., Teo, K.: Model reduction for state-space symmetric systems. Syst. Control Lett. 34(4), 209–215 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  46. Moore, B.: Principal component analysis in linear systems: controllability, observability, and model reduction. IEEE Trans. Autom. Control 26(1), 17–32 (1981)

    Article  MathSciNet  MATH  Google Scholar 

  47. Ober, R.: Balanced parametrization of classes of linear systems. SIAM J. Control Optim. 29(6), 1251–1287 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  48. Odabasioglu, A., Celik, M., Pileggi, L.: PRIMA: passive reduced-order interconnect macromodeling algorithm. IEEE Trans. Comput. Aided Des. Integr. Circuits Syst. 17(8), 645–654 (1998)

    Article  Google Scholar 

  49. Ovalekar, V., Narayanan, H.: Fast loop matrix generation for hybrid analysis and a comparison of the sparsity of the loop impedance and MNA impedance submatrices. In: Proceedings of the IEEE International Symposium on Circuits and Systems, ISCAS ’92, vol. 4, pp. 1780–1783 (1992)

    Google Scholar 

  50. Penzl, T.: A cyclic low-rank Smith method for large sparse Lyapunov equations. SIAM J. Sci. Comput. 21(4), 1401–1418 (1999/2000)

    Google Scholar 

  51. Penzl, T.: LYAPACK Users Guide. Preprint SFB393/00-33, Fakultät für Mathematik, Technische Universität Chemnitz, Chemnitz (2000). Available from http://www.tu-chemnitz.de/sfb393/sfb00pr.html

  52. Phillips, J., Daniel, L., Silveira, L.: Guaranteed passive balancing transformations for model order reduction. IEEE Trans. Comput. Aided Des. Integr. Circuits Syst. 22(8), 1027–1041 (2003)

    Article  Google Scholar 

  53. Poloni, F., Reis, T.: A deflation approach for large-scale Lur’e equations. SIAM. J. Matrix Anal. Appl. 33(4), 1339–1368 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  54. Reis, T., Stykel, T.: PABTEC: Passivity-preserving balanced truncation for electrical circuits. IEEE Trans. Compu. Aided Des. Integr. Circuits Syst. 29(9), 1354–1367 (2010)

    Article  Google Scholar 

  55. Reis, T., Stykel, T.: Positive real and bounded real balancing for model reduction of descriptor systems. Int. J. Control 83(1), 74–88 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  56. Reis, T., Stykel, T.: Lyapunov balancing for passivity-preserving model reduction of RC circuits. SIAM J. Appl. Dyn. Syst. 10(1), 1–34 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  57. Rewieński, M.: A trajectory piecewise-linear approach to model order reduction of nonlinear dynamical systems. Ph.D. thesis, Massachusetts Institute of Technology (2003)

    Google Scholar 

  58. Riaza, R., Tischendorf, C.: Qualitative features of matrix pencils and DAEs arising in circuit dynamics. Dyn. Syst. 22, 107–131 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  59. Riaza, R., Tischendorf, C.: The hyperbolicity problem in electrical circuit theory. Math. Methods Appl. Sci. 33(17), 2037–2049 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  60. Rommes, J., Schilders, W.: Efficient methods for large resistor networks. IEEE Trans. Comput. Aided Des. Integr. Circuits Syst. 29(1), 28–39 (2010)

    Article  Google Scholar 

  61. Roos, J., Costa, L. (eds.): Scientific Computing in Electrical Engineering SCEE 2008. Mathematics in Industry, vol. 14. Springer, Berlin/Heidelberg (2010)

    Google Scholar 

  62. Saad, Y.: Iterative Methods for Sparse Linear Systems. PWS Publishing Company, Boston, MA (1996)

    MATH  Google Scholar 

  63. Sabino, J.: Solution of large-scale Lyapunov equations via the block modified Smith method. Ph.D. thesis, Rice University, Houston (2006)

    Google Scholar 

  64. Schilders, W., van der Vorst, H., J., R. (eds.): Model Order Reduction: Theory, Research Aspects and Applications. Mathematics in Industry, vol. 13. Springer, Berlin/Heidelberg (2008)

    Google Scholar 

  65. Sirovich, L.: Turbulence and the dynamics of coherent structures. I: coherent structures. II: symmetries and transformations. III: dynamics and scaling. Q. Appl. Math. 45, 561–590 (1987)

    MathSciNet  MATH  Google Scholar 

  66. Sorensen, D.: Passivity preserving model reduction via interpolation of spectral zeros. Syst. Control Lett. 54(4), 347–360 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  67. Soto, M.S., Tischendorf, C.: Numerical analysis of DAEs from coupled circuit and semiconductor simulation. Appl. Numer. Math. 53(2–4), 471–88 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  68. Steinbrecher, A., Stykel, T.: Model order reduction of nonlinear circuit equations. Int. J. Circuits Theory Appl. 41, 1226–1247 (2013)

    Article  Google Scholar 

  69. Stykel, T.: Gramian-based model reduction for descriptor systems. Math. Control Signals Syst. 16, 297–319 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  70. Stykel, T.: Low-rank iterative methods for projected generalized Lyapunov equations. Electron. Trans. Numer. Anal. 30, 187–202 (2008)

    MathSciNet  MATH  Google Scholar 

  71. Stykel, T.: Balancing-related model reduction of circuit equations using topological structure. In: Benner, P., Hinze, M., ter Maten, E. (eds.) Model Reduction for Circuit Simulation. Lecture Notes in Electrical Engineering, vol. 74, pp. 53–80. Springer, Berlin/Heidelberg (2011)

    Chapter  Google Scholar 

  72. Stykel, T., Reis, T.: The PABTEC algorithm for passivity-preserving model reduction of circuit equations. In: Proceedings of the 19th International Symposium on Mathematical Theory of Networks and Systems, MTNS 2010, Budapest, 5–9 July 2010, paper 363. ELTE, Budapest (2010)

    Google Scholar 

  73. Tischendorf, C.: Coupled systems of differential algebraic and partial differential equations in circuit and device simulation. Habilitation thesis, Humboldt-Universität Berlin (2004)

    Google Scholar 

  74. Varga, A.: On computing high accuracy solutions of a class of Riccati equations. Control Theory Adv. Technol. 10, 2005–2016 (1995)

    MathSciNet  Google Scholar 

  75. Vlach, J., Singhal, K.: Computer Methods for Circuit Analysis and Design. Van Nostrand Reinhold, New York (1994)

    Google Scholar 

  76. Wachspress, E.: Iterative solution of the Lyapunov matrix equation. Appl. Math. Lett. 1, 87–90 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  77. Wachspress, E.: The ADI minimax problem for complex spectra. In: Kincaid, D., Hayes, L. (eds.) Iterative Methods for Large Linear Systems, pp. 251–271. Academic, San Diego (1990)

    Chapter  Google Scholar 

  78. Wachspress, E.: The ADI Model Problem. Monograph, Windsor, CA (1995)

    MATH  Google Scholar 

  79. Weinbreg, L., Ruehili, A.: Combined modified loop analysis, modified nodal analysis for large-scale circuits. IBM Research Report RC 10407, IBM Research Devision (1984)

    Google Scholar 

Download references

Acknowledgements

The work reported in this paper was supported by the German Federal Ministry of Education and Research (BMBF), grant no. 03STPAE3. Responsibility for the contents of this publication rests with the authors.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tatjana Stykel .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Steinbrecher, A., Stykel, T. (2017). Element-Based Model Reduction in Circuit Simulation. In: Benner, P. (eds) System Reduction for Nanoscale IC Design. Mathematics in Industry, vol 20. Springer, Cham. https://doi.org/10.1007/978-3-319-07236-4_2

Download citation

Publish with us

Policies and ethics