HandyScope: A Remote Control Technique Using Circular Widget on Tabletops

  • Takuro Kuribara
  • Yusaku Mita
  • Kazusa Onishi
  • Buntarou Shizuki
  • Jiro Tanaka
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8511)


A large multi-touch tabletop has remote areas that the users might not touch by their hands. This forces users to move around the tabletop. In this paper, we present a novel remote control technique which we call HandyScope. This technique allows users to manipulate those remote areas. Moreover, users can move an object between the nearby area and the remote areas using a widget. In addition, users can precisely point a remote area quickly because this system includes our proposed control-display ratio changing system. To evaluate the performance of HandyScope, we compared HandyScope with direct touch manipulation. The results show that HandyScope is significantly faster in selection.


bimanual interaction multi-touch gesture dynamic control-display gain pointing target acquisition pull-out 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Abednego, M., Lee, J.H., Moon, W., Park, J.H.: I-Grabber: Expanding physical reach in a large-display tabletop environment through the use of a virtual grabber. In: Proc. of ITS 2009, pp. 61–64 (2009)Google Scholar
  2. 2.
    Balakrishnan, R., Fitzmaurice, G., Kurtenbach, G., Buxton, W.: Digital tape drawing. In: Proc. of UIST 1999, pp. 161–169 (1999)Google Scholar
  3. 3.
    Banerjee, A., Burstyn, J., Girouard, A., Vertegaal, R.: Pointable: An in-air pointing technique to manipulate out-of-reach targets on tabletops. In: Proc. of ITS 2011, pp. 11–20 (2011)Google Scholar
  4. 4.
    Banovic, N., Li, F.C.Y., Dearman, D., Yatani, K., Truong, K.N.: Design of unimanual multi-finger pie menu interaction. In: Proc. of ITS 2011, pp. 120–129 (2011)Google Scholar
  5. 5.
    Bartindale, T., Harrison, C., Olivier, P., Hudson, S.E.: SurfaceMouse: Supplementing multi-touch interaction with a virtual mouse. In: Proc. of TEI 2011, pp. 293–296 (2011)Google Scholar
  6. 6.
    Baudisch, P., Sinclair, M., Wilson, A.: Soap: A pointing device that works in mid-air. In: Proc. of UIST 2006, pp. 43–46 (2006)Google Scholar
  7. 7.
    Benko, H., Wilson, A.D., Baudisch, P.: Precise selection techniques for multi-touch screens. In: Proc. of CHI 2006, pp. 1263–1272 (2006)Google Scholar
  8. 8.
    Bolt, R.A.: Gaze-orchestrated dynamic windows. In: Proc. of SIGGRAPH 1981, pp. 109–119 (1981)Google Scholar
  9. 9.
    Furumi, G., Sakamoto, D., Igarashi, T.: SnapRail: A tabletop user interface widget for addressing occlusion by physical objects. In: Proc. of ITS 2012, pp. 193–196 (2012)Google Scholar
  10. 10.
    Grossman, T., Balakrishnan, R., Kurtenbach, G., Fitzmaurice, G., Khan, A., Buxton, B.: Creating principal 3D curves with digital tape drawing. In: Proc. of CHI 2002, pp. 121–128 (2002)Google Scholar
  11. 11.
    Khan, A., Fitzmaurice, G., Almeida, D., Burtnyk, N., Kurtenbach, G.: A remote control interface for large displays. In: Proc. of UIST 2004, pp. 127–136 (2004)Google Scholar
  12. 12.
    Malik, S., Ranjan, A., Balakrishnan, R.: Interacting with large displays from a distance with vision-tracked multi-finger gestural input. In: Proc. of UIST 2005, pp. 43–52 (2005)Google Scholar
  13. 13.
    Matejka, J., Grossman, T., Lo, J., Fitzmaurice, G.: The design and evaluation of multi-finger mouse emulation techniques. In: Proc. of CHI 2009, pp. 1073–1082 (2009)Google Scholar
  14. 14.
    Myers, B.A., Bhatnagar, R., Nichols, J., Peck, C.H., Kong, D., Miller, R., Long, A.C.: Interacting at a distance: Measuring the performance of laser pointers and other devices. In: Proc. of CHI 2002, pp. 33–40 (2002)Google Scholar
  15. 15.
    Parker, J.K., Mandryk, R.L., Inkpen, K.M.: TractorBeam: Seamless integration of local and remote pointing for tabletop displays. In: Proc. of GI 2005, pp. 33–40 (2005)Google Scholar
  16. 16.
    Song, P., Goh, W.B., Hutama, W., Fu, C.W., Liu, X.: A handle bar metaphor for virtual object manipulation with mid-air interaction. In: Proc. of CHI 2012, pp. 1297–1306 (2012)Google Scholar
  17. 17.
    Tokoro, Y., Terada, T., Tsukamoto, M.: A pointing method using two accelerometers for wearable computing. In: Proc. of SAC 2009, pp. 136–141 (2009)Google Scholar
  18. 18.
    Voelker, S., Weiss, M., Wacharamanotham, C., Borchers, J.: Dynamic Portals: A lightweight metaphor for fast object transfer on interactive surfaces. In: Proc. of ITS 2011, pp. 158–161 (2011)Google Scholar
  19. 19.
    Vogel, D., Balakrishnan, R.: Distant freehand pointing and clicking on very large, high resolution displays. In: Proc. of UIST 2005, pp. 33–42 (2005)Google Scholar
  20. 20.
    Wang, R., Paris, S., Popović, J.: 6D hands: Markerless hand-tracking for computer aided design. In: Proc. of UIST 2011, pp. 549–558 (2011)Google Scholar
  21. 21.
    Yoshikawa, T., Mita, Y., Kuribara, T., Shizuki, B., Tanaka, J.: A remote pointing technique using pull-out. In: Proc. of HCI 2013, pp. 416–426 (2013)Google Scholar
  22. 22.
    Yoshikawa, T., Shizuki, B., Tanaka, J.: HandyWidgets: Local widgets pulled-out from hands. In: Proc. of ITS 2012, pp. 197–200 (2012)Google Scholar
  23. 23.
    Zhang, H., Yang, X.D., Ens, B., Liang, H.N., Boulanger, P., Irani, P.: See Me, See You: A lightweight method for discriminating user touches on tabletop displays. In: Proc. of CHI 2012, pp. 2327–2336 (2012)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • Takuro Kuribara
    • 1
  • Yusaku Mita
    • 1
  • Kazusa Onishi
    • 1
  • Buntarou Shizuki
    • 1
  • Jiro Tanaka
    • 1
  1. 1.University of TsukubaJapan

Personalised recommendations