A Survey of Datasets for Human Gesture Recognition

  • Simon Ruffieux
  • Denis Lalanne
  • Elena Mugellini
  • Omar Abou Khaled
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8511)


This paper presents a survey on datasets created for the field of gesture recognition. The main characteristics of the datasets are presented on two tables to provide researchers a clear and rapid access to the information. This paper also provides a comprehensive description of the datasets and discusses their general strengths and limitations. Guidelines for creation and selection of datasets for gesture recognition are proposed. This survey should be a key-access point for researchers looking to create or use datasets in the field of human gesture recognition.


human-computer interaction gesture recognition datasets survey 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Kuehne, H., Jhuang, H., Garrote, E., Poggio, T., Serre, T.: HMDB: A large video database for human motion recognition. In: 2011 Int. Conf. Comput. Vis., pp. 2556–2563 (2011)Google Scholar
  2. 2.
    Chaquet, J.M., Carmona, E.J., Fernández-Caballero, A.: A survey of video datasets for human action and activity recognition. Comput. Vis. Image Underst. 117, 633–659 (2013)CrossRefGoogle Scholar
  3. 3.
    Computer Vision Index Dataset: (accessed: October 23, 2013)
  4. 4.
    CV Datasets on the web: (accessed: October 1, 2014)
  5. 5.
    Ruffieux, S., Mugellini, E., Lalanne, D., Khaled, O.A.: FEOGARM : A Framework to Evaluate and Optimize Gesture Acquisition and Recognition Methods. In: Work. Robust Mach. Learn. Tech. Hum. Act. Recognition; Syst. Man Cybern., Anchorage (2011)Google Scholar
  6. 6.
    Ruffieux, S., Lalanne, D., Mugellini, E.: ChAirGest: A Challenge for Multimodal Mid-Air Gesture Recognition for Close HCI. In: Proc. 15th ACM Int. Conf. Multimodal Interact. - ICMI 2013, pp. 483–488. ACM Press, Sydney (2013)CrossRefGoogle Scholar
  7. 7.
    Xu, X., Tang, J., Zhang, X., Liu, X., Zhang, H., Qiu, Y.: Exploring techniques for vision based human activity recognition: methods, systems, and evaluation. Sensors (Basel) 13, 1635–1650 (2013)Google Scholar
  8. 8.
    Poppe, R.: A survey on vision-based human action recognition. Image Vis. Comput. 28, 976–990 (2010)CrossRefGoogle Scholar
  9. 9.
    Aggarwal, J.K., Ryoo, M.S.: Human activity analysis. ACM Comput. Surv. 43, 1–43 (2011)CrossRefGoogle Scholar
  10. 10.
    Ahad, S., Tan, M.A.R., Kim, J., Ishikawa, H.: Action dataset—A survey. In: 2011 Proc., SICE Annu. Conf. (SICE), pp. 1650–1655 (2011)Google Scholar
  11. 11.
    Andriluka, M., Sigal, L., Black, M.J.: Benchmark Datasets for Pose Estimation and Tracking. In: Moeslund, T.B., Hilton, A., Krüger, V., Sigal, L. (eds.) Vis. Anal. Humans. Springer, London (2011)Google Scholar
  12. 12.
    Mitra, S., Acharya, T.: Gesture recognition: A survey. IEEE Trans. Syst. Man, Cybern. Part C Appl. Rev. 37, 311–324 (2007)CrossRefGoogle Scholar
  13. 13.
    Wachs, J.P., Kölsch, M., Stern, H., Edan, Y.: Vision-based hand-gesture applications. Commun. ACM. 54, 60 (2011)CrossRefGoogle Scholar
  14. 14.
    Pavlovic, V.I., Sharma, R., Huang, T.S.: Visual interpretation of hand gestures for human-computer interaction: A review. IEEE Trans. on Pattern Anal. Mach. Intell. 19, 677–695 (1997)CrossRefGoogle Scholar
  15. 15.
    Hasan, H., Abdul-Kareem, S.: Human–computer interaction using vision-based hand gesture recognition systems: A survey. Neural Comput. Appl. (2013)Google Scholar
  16. 16.
    Dreuw, P., Neidle, C., Athitsos, V., Sclaroff, S., Ney, H.: Benchmark Databases for Video-Based Automatic Sign Language Recognition. In: Int. Conf. Lang. Resour. Eval., Marrakech, Morocco, pp. 1–6 (2008)Google Scholar
  17. 17.
    Athitsos, V., Wang, H., Stefan, A.: A database-based framework for gesture recognition. Pers. Ubiquitous Comput. 14, 511–526 (2010)CrossRefGoogle Scholar
  18. 18.
    Glomb, P., Romaszewski, M., Opozda, S., Sochan, A.: Choosing and Modeling Hand Gesture Database for Natural User Interface. In: Proc. 9th Int. Gesture Work., Athens, Greece, pp. 72–75 (2011)Google Scholar
  19. 19.
    Fothergill, S., Mentis, H., Kohli, P., Nowozin, S.: Instructing people for training gestural interactive systems. In: Proc. 2012 ACM Annu. Conf. Hum. Factors Comput. Syst. - CHI 2012, p. 1737 (2012)Google Scholar
  20. 20.
    ARB Labs: (accessed: October 23, 2013)
  21. 21.
    Conly, C., Doliotis, P., Jangyodsuk, P., Alonzo, R., Athitsos, V.: Toward a 3D Body Part Detection Video Dataset and Hand Tracking Benchmark Categories and Subject Descriptors. In: Pervasive Technol. Relat. to Assist. Environ. (2013)Google Scholar
  22. 22.
    Escalera, S., Sminchisescu, C., Bowden, R., Sclaroff, S., Gonzàlez, J., Baró, X., et al.: ChaLearn multi-modal gesture recognition 2013. In: Proc. 15th ACM Int. Conf. Multimodal Interact. - ICMI 2013, pp. 365–368. ACM Press, New York (2013)CrossRefGoogle Scholar
  23. 23.
    Davis, L.S.: Recognizing actions by shape-motion prototype trees. In: 2009 IEEE 12th Int. Conf. Comput. Vis., pp. 444–451. IEEE (2009)Google Scholar
  24. 24.
    Bloom, V., Makris, D., Argyriou, V.: G3D: A gaming action dataset and real time action recognition evaluation framework. In: 2012 IEEE Comput. Soc. Conf. Comput. Vis. Pattern Recognit. Work., pp. 7–12 (2012)Google Scholar
  25. 25.
    Sadeghipour, A., Morency, L., Kopp, S.: Gesture-based Object Recognition using Histograms of Guiding Strokes. In: Procedings Br. Mach. Vis. Conf. 2012, British Machine Vision Association, pp. 44.1–44.11 (2012)Google Scholar
  26. 26.
    Liu, L., Shao, L.: Learning Discriminative Representations from RGB-D Video Data. In: Proc. Int. Jt. Conf. Artif. Intell. (2013)Google Scholar
  27. 27.
    Chen, M., AlRegib, G.: A new 6d motion gesture database and the benchmark results of feature-based statistical recognition. Emerg. Signal Process, 131–134 (2012)Google Scholar
  28. 28.
    Kurakin, A., Zhang, Z., Liu, Z.: A real time system for dynamic hand gesture recognition with a depth sensor. In: Signal Process. Conf., pp. 1975–1979 (2012)Google Scholar
  29. 29.
    Guyon, I., Athitsos, V., Jangyodsuk, P., Hamner, B., Escalante, H.J.: ChaLearn Gesture Challenge: Design and First Results. In: IEEE Conf. Comput. Vis. Pattern Recognit. Work., pp. 1–6. IEEE (2012)Google Scholar
  30. 30.
    Song, Y., Demirdjian, D., Davis, R.: Tracking Body and Hands for Gesture Recognition: NATOPS Aircraft Handling Signals Database. In: Proc. IEEE Int. Conf. Autom. Face Gesture Recognit., pp. 500–506. IEEE, Santa Barbara (2011)Google Scholar
  31. 31.
    Ren, Z., Meng, J., Yuan, J., Zhang, Z.: Robust hand gesture recognition with kinect sensor. In: Proc. 19th ACM Int. Conf. Multimed. - MM 2011, p. 759. ACM Press, New York (2011)Google Scholar
  32. 32.
    Athitsos, V., Neidle, C., Sclaroff, S., Nash, J., Stefan, A., Thangali, A.: The American Sign Language Lexicon Video Dataset. In: 2008 IEEE Comput. Soc. Conf. Comput. Vis. Pattern Recognit. Work, pp. 1–8. IEEE (2008)Google Scholar
  33. 33.
    Kim, T.-K., Wong, S.-F., Cipolla, R.: Tensor Canonical Correlation Analysis for Action Classification. In: 2007 IEEE Conf. Comput. Vis. Pattern Recognit., pp. 1–8 (2007)Google Scholar
  34. 34.
    Ruffieux, S., Lalanne, D., Mugellini, E., Abou Khaled, O.: Gesture Recognition Corpora and Tools: A Scripted Ground Truthing Method, Publ. Submitt. to J. Comput. Vis. Image Underst. (2014)Google Scholar
  35. 35.
    Banos, O., Calatroni, A., Damas, M., Pomares, H., Rojas, I., Sagha, H., et al.: Kinect=IMU? Learning MIMO Signal Mappings to Automatically Translate Activity Recognition Systems across Sensor Modalities. In: IEEE 2012 16th Int. Symp. Wearable Comput., pp. 92–99 (2012)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • Simon Ruffieux
    • 1
  • Denis Lalanne
    • 2
  • Elena Mugellini
    • 1
  • Omar Abou Khaled
    • 1
  1. 1.University of Applied Sciences and Arts of Western SwitzerlandFribourgSwitzerland
  2. 2.University of FribourgSwitzerland

Personalised recommendations