RemoteHand: A Wireless Myoelectric Interface

  • Andreas Attenberger
  • Klaus Buchenrieder
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8511)


While myoeletric signals (MES) have long been employed for actuating hand prostheses, their potential as novel input for the interaction with computer systems has received little attention up until now. In this contribution, we present RemoteHand, a system that fosters remote device control through the transmission of myoelectric data over WLAN. This allows to manipulate objects through the user’s muscle activity regardless of their physical location. In our setup, a mechanical hand is controlled through electromyographic (EMG) sensors placed over the user’s forearm muscles. This approach is compared to a conventional remote device control exercised by a tablet touchpad. The results of our user study show that wireless interaction through myoelectric signals is a valid approach. Study participants achieved interaction speeds equal to those of a standard input method. Users especially value myoelectric input with regard to novelty and stimulation.


EMG Myoelectric Signals Prosthetic Hand Remote Control Wireless 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Reiter, R.: Eine neue Elektrokunsthand. Grenzgebiete der Medizin 1(4), 133–135 (1948)Google Scholar
  2. 2.
    Muzumdar, A.: Powered Upper Limb Prostheses: Control, Implementation and Clinical Application. Springer (2004)Google Scholar
  3. 3.
    Stelarc: stelarc // Third Hand (2013),
  4. 4.
    Saponas, T.S., Tan, D.S., Morris, D., Balakrishnan, R.: Demonstrating the feasibility of using forearm electromyography for muscle-computer interfaces. In: CHI 2008: Proceeding of the Twenty-Sixth Annual SIGCHI Conference on Human Factors in Computing Systems, pp. 515–524. ACM, New York (2008)CrossRefGoogle Scholar
  5. 5.
    Saponas, T.S., Tan, D.S., Morris, D., Balakrishnan, R., Turner, J., Landay, J.A.: Enabling always-available input with muscle-computer interfaces. In: Proceedings of the 22nd Annual ACM Symposium on User Interface Software and Technology, UIST 2009, pp. 167–176. ACM, New York (2009)Google Scholar
  6. 6.
    Techvibes, Y.: Combinator Backed Thalmic Labs Introduces MYO, the Motion Tracking Armband (2013),
  7. 7.
    Dubost, G., Tanaka, A.: A wireless, network-based biosensor interface for music. In: Proceedings of International Computer Music Conference, ICMC (2002)Google Scholar
  8. 8.
    Zhang, X., Chen, X., Wang, W.H., Yang, J.H., Lantz, V., Wang, K.Q.: Hand gesture recognition and virtual game control based on 3D accelerometer and EMG sensors. In: Proceedings of the 14th International Conference on Intelligent User Interfaces, IUI 2009, pp. 401–406. ACM, New York (2009)Google Scholar
  9. 9.
    Benko, H., Saponas, T.S., Morris, D., Tan, D.: Enhancing input on and above the interactive surface with muscle sensing. In: Proceedings of the ACM International Conference on Interactive Tabletops and Surfaces, ITS 2009, pp. 93–100. ACM, New York (2009)Google Scholar
  10. 10.
    Costanza, E., Inverso, S.A., Allen, R.: Toward subtle intimate interfaces for mobile devices using an EMG controller. In: Proceedings of the SIGCHI Conference on Human Factors in Computing Systems, CHI 2005, pp. 481–489. ACM, New York (2005)Google Scholar
  11. 11.
    Attenberger, A., Buchenrieder, K.: Wavelet-based detrending for emg noise removal. In: Rozenblit, J.W. (ed.) ECBS, pp. 196–202. IEEE (2013)Google Scholar
  12. 12.
    Fastenrath, H.: EMG Signalverarbeitung und Prothesensteuerung auf dem iPad. Master’s thesis, Universität der Bundeswehr München (2013)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • Andreas Attenberger
    • 1
  • Klaus Buchenrieder
    • 1
  1. 1.Institut für Technische InformatikUniversität der Bundeswehr MünchenNeubibergGermany

Personalised recommendations