Analysis of Demographical Factors’ Influence on Websites’ Credibility Evaluation

  • Maria Rafalak
  • Piotr Bilski
  • Adam Wierzbicki
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8512)


The paper presents results of an experiment conducted in 2013 via Amazon Mechanical Turk Platform ( aimed at creating a classifier predicting online content credibility evaluation misjudgement tendencies. The rough sets based module processes demographic variables describing each participant and predicts his/her misjudgement tendency. Data collection method, data-set preparation are described in detail. Next the rough set methodology is introduced explaining the process of training and validating using available data. Experimental results are presented in detail showing the classification accuracy for various configurations of rough-sets algorithms. The analysis of importance of subsequent demographic variables on prediction efficiency is discussed as well. The paper is concluded with future prospects and future applications of implemented methodology.


Demographic variables rough sets classification artificial intelligence credibility assessment 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Lucassen, T., Schraagen, M.: The inuence of source cues and topic familiarity on credibility evaluation. Computers in Human Behavior 29(4), 1387–1392 (2013)CrossRefGoogle Scholar
  2. 2.
    Rimmer, T., Weaver, F.: Different questions, different answers? media use and media credibility. Journalism & Mass Communication Quarterly 64(1), 28–44 (1987)CrossRefGoogle Scholar
  3. 3.
    Morris, M., Counts, S., Roseway, A., Ho, A., Schwarz, J.: Tweeting is believing?: understanding microblog credibility perceptions. In: Proceedings of the ACM 2012 Conference on Computer Supported Cooperative Work, pp. 441–450. ACM (2012)Google Scholar
  4. 4.
    Fogg, B.J.: Prominence-interpretation theory: explaining how people assess credibility online. In: CHI 2003 Extended Abstracts on Human Factors in Computing Systems, pp. 722–723 (2003)Google Scholar
  5. 5.
    Metzger, M., Flanagin, A., Medders, R.: Social and heuristic approaches to credibility evaluation online. Journal of Communication 60(3), 413–439 (2010)CrossRefGoogle Scholar
  6. 6.
    Kostakos, V.: Is the crowd’s wisdom biased? a quantitative analysis of three online communities. In: Computational Science and Engineering International Conference, vol. 4, pp. 251–255. IEEE (2009)Google Scholar
  7. 7.
    Weijia, D., Jin, G., Lee, J., Luca, M.: Optimal Aggregation of Consumer Ratings: An Application to Harvard Business School Working Paper 13, 42 (2012)Google Scholar
  8. 8.
    Salganik, M.J., Dodds, P.S., Watts, D.J.: Experimental Study of Inequality and Unpredictability in an Artificial Cultural Market. Science 311(5762), 854–856 (2006)CrossRefGoogle Scholar
  9. 9.
    Bolton, G., Greiner, B., Ockenfels, A.: Engineering trust: reciprocity in the production of reputation information. Management Science 59(2), 265–285 (2013)CrossRefGoogle Scholar
  10. 10.
    Hvidsten, T.R., Komorowski, J.: Rough Sets in Bioinformatics. In: Peters, J.F., Skowron, A., Marek, V.W., Orłowska, E., Słowiński, R., Ziarko, W.P. (eds.) Transactions on Rough Sets VII. LNCS, vol. 4400, pp. 225–243. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  11. 11.
    Tay, E.H., Shen, L.: Economic and Financial Prediction Using Rough Sets Model. European Journal of Operational Research 141(3), 641–659 (2002)CrossRefzbMATHGoogle Scholar
  12. 12.
    Sikora, M., Sikora, B.: Rough Natural Hazards Monitoring, Rough Sets: Selected Methods and Applications in Management and Engineering. In: Advanced Information and Knowledge Processing, pp. 163–179 (2012)Google Scholar
  13. 13.
    Bilski, P., Wojciechowski, J.: Rough-Sets-Based Reduction for Analog Systems Diagnostics. IEEE Transactions on Instrumentation and Measurement 60(3), 880–890 (2011)CrossRefGoogle Scholar
  14. 14.
    Tan, S., Cheng, X., Xu, H.: An Efficient Global Optimization Approach for Rough Set Based Dimensionalty Reduction. International Journal of Innovative Computing, Information and Control 3(3), 725–736 (2007)Google Scholar
  15. 15.
    Pawlak, Z.: Rough sets. International Journal of Parallel Programming 11(5), 341–356 (1982)zbMATHMathSciNetGoogle Scholar
  16. 16.
    Pawlak, Z., Grzymala-Busse, J., Slowinski, R., Ziarko, W.: Rough Sets. Communications of the ACM 38–11, 88–95 (1995)Google Scholar
  17. 17.
    Öhrn, A., Komorowski, J.: ROSETTA: a rough set toolkit for analysis of data. In: Proceedings of the Third Joint Annual Conference on Information Sciences, Durham, NC, pp. 403–407 (1997)Google Scholar
  18. 18.
    Metzger, M., Flanagin, A.: Credibility and trust of information in online environments: The use of cognitive heuristics. Journal of Pragmatics 59, 210–220 (2013)CrossRefGoogle Scholar
  19. 19.
    Jianakoplos, N., Bernasek, A.: Are women more risk averse? Economic Inquiry 36, 620–630 (1998)CrossRefGoogle Scholar
  20. 20.
    Dwyera, P., Gilkesonb, J., List, J.: Gender differences in revealed risk taking: evidence from mutual fund investors. Economics Letters 76(2), 151–158 (2002)CrossRefGoogle Scholar
  21. 21.
    Buchana, N., Crosonb, R., Solnickc, S.: Trust and gender: An examination of behavior and beliefs in the Investment Game. Journal of Economic Behavior & Organization 68(3-4), 466–476 (2008)CrossRefGoogle Scholar
  22. 22.
    Kosinski, M., Stillwell, D.J., Graepel, T.: Private traits and attributes are predictable from digital records of human behavior. Proceedings of the National Academy of Sciences (PNAS) (2013)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • Maria Rafalak
    • 1
  • Piotr Bilski
    • 2
  • Adam Wierzbicki
    • 1
  1. 1.Polish-Japanese Institute of Information Technology, (PJIIT)WarsawPoland
  2. 2.Institute of RadioelectronicsWarsaw University of TechnologyWarsawPoland

Personalised recommendations