Advertisement

An Adaptive Semantic Mobile Application for Individual Touristic Exploration

  • Christine Keller
  • Rico Pöhland
  • Sören Brunk
  • Thomas Schlegel
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8512)

Abstract

Expectations towards information access are rising as technology is increasingly pervasive in public spaces. Information for tourists such as on sights, transportation options or lodging is instantly available on mobile phones or public displays. However, it is still mostly up to the users to query different sources for information, find information suitable to their situation and to combine that information afterwards in order to reach their goal. In this paper, we present an approach that provides integrated and situational information on different tourism-related topics. We introduce our adaptation concept based on semantic descriptions of user context and integrated information sources and we describe the prototype implementing our concept. We evaluate our approach in a user study and discuss starting points for future work.

Keywords

Adaptation Context-Awareness Semantic Web Mobile Application 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Castillo, L., Armengol, E., Onaindía, E., Sebastiá, L., González-Boticario, J., Rodríguez, A., Fernández, S., Arias, J.D., Borrajo, D.: Samap: An user-oriented adaptive system for planning tourist visits. Expert Systems with Applications 34(2), 1318–1332 (2008)CrossRefGoogle Scholar
  2. 2.
    Cyganiak, R., Lanthaler, M., Wood, D.: RDF 1.1 concepts and abstract syntax. W3C proposed reccommendation, W3C (January 2014), http://www.w3.org/TR/2014/PR-rdf11-concepts-20140109/
  3. 3.
    García-Crespo, A., Chamizo, J., Rivera, I., Mencke, M., Colomo-Palacios, R., Gómez-Berbís, J.M.: Speta: Social pervasive e-tourism advisor. Telematics and Informatics 26(3), 306–315 (2009)CrossRefGoogle Scholar
  4. 4.
    Jørgensen, A.H.: Using the thinking-aloud method in system development. In: Proceedings of the Third International Conference on Human-computer Interaction on Designing and Using Human-computer Interfaces and Knowledge Based Systems, pp. 743–750. Elsevier Science Inc., New York (1989)Google Scholar
  5. 5.
    Lee, C.-S., Chang, Y.-C., Wang, M.-H.: Ontological recommendation multi-agent for Tainan City travel. Expert Systems with Applications 36(3, pt. 2), 6740–6753 (2009)CrossRefGoogle Scholar
  6. 6.
    Lehmann, J., Isele, R., Jakob, M., Jentzsch, A., Kontokostas, D., Mendes, P.N., Hellmann, S., Morsey, M., van Kleef, P., Auer, S., Bizer, C.: Dbpedia - a large-scale, multilingual knowledge base extracted from wikipedia. Semantic Web Journal (2013)Google Scholar
  7. 7.
    Nielsen, J.: Estimating the number of subjects needed for a thinking aloud test. International Journal of Human-Computer Studies 41(3), 385–397 (1994)CrossRefGoogle Scholar
  8. 8.
    Stadler, C., Lehmann, J., Höffner, K., Auer, S.: Linkedgeodata: A core for a web of spatial open data. Semantic Web Journal 3(4), 333–354 (2012)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • Christine Keller
    • 1
  • Rico Pöhland
    • 1
  • Sören Brunk
    • 1
  • Thomas Schlegel
    • 1
  1. 1.Software Engineering of Ubiquitous SystemsTU DresdenGermany

Personalised recommendations