Advertisement

Data Preloading Technique using Intention Prediction

  • Seungyup Lee
  • Juwan Yoo
  • Da Young Ju
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8512)

Abstract

Various smart devices provide fast response time and ubiquitous web-environment to users for better user experiences (UXs). However, high device performance that users perceive is not always promised because there should be limited network bandwidth, and computation capabilities. When the network and computation capabilities are overloaded, users experience buffering and loading time to accomplish a certain task. We, therefore, propose data preloading technique [1], which predicts user intention and preloads the web and local application data to provide better device performance in spite of poor network conditions and outdated hardware. We also design intention cognitive model to predict user intention precisely. Four user intention prediction algorithms, which are applicable to various conventional input methods, are described and compared each performance in both user’s and device’s aspects.

Keywords

Preloading algorithm intention prediction hovering state input device 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Yoo, J.Y., Lee, S.Y., Ahn, C.T.: Air Hook: Data preloading user interface. In: IEEE International Conference on ICT Convergence (ICTC), pp. 163–167 (2012)Google Scholar
  2. 2.
    Shneiderman, B., Plaisant, C.: Interaction devices: Designing the User Interface, 5th edn., pp. 331–337. Pearson (2010)Google Scholar
  3. 3.
    Suh, S., Yi, K., Choi, C., Park, D., Kim, C.: Mobile LCD device with transparent infrared image sensor panel for touch and hover sensing. In: IEEE International Conference on Consumer Electronics, pp. 213–214 (2012)Google Scholar
  4. 4.
    Mizumata, T., Sakamoto, R.: A pinch up gesture on multi-touch table with hover detection. In: ACM SIGGRAPH ASIA 2010 Posters, p. 27 (2010)Google Scholar
  5. 5.
    Hirsch, M., Lanman, D., Holtzman, H., Raskar, R.: BiDi Screen: A Thin, Depth-Sensing LCD for 3D Interaction using Light Fields. ACM Trans. on Grap. 28, 159 (2009)Google Scholar
  6. 6.
    Dohse, K.C., Dohse, T., Still, J.D., Parkhurst, D.J.: Enhancing Multi- user Interaction with Multi-touch Tabletop Displays Using Hand Tracking. In: International Conference on Advances in Computer-Human Interaction, pp. 297–302 (2008)Google Scholar
  7. 7.
    Moffatt, K., Yuen, S., McGrenere, J.: Hover or tap?: supporting pen- based menu navigation for older adults. In: ACM SIGACCESS Conference on Computers and Accessibility, pp. 51–58 (2008)Google Scholar
  8. 8.
    Grossman, T., Hinckley, K., Baudisch, P., Agrawala, M., Balakrishnan, R.: Hover widgets: using the tracking state to extend the capabilities of pen-operated devices. In: ACM SIGCHI Conference on Human Factors in Computing Systems, pp. 861–870 (2006)Google Scholar
  9. 9.
    Jiang, Y., Wu, M.Y., Shu, W.: Web prefetching: Costs, benefits and performance. In: International Workshop on Web Content Caching and Distribution, Colorado (2002)Google Scholar
  10. 10.
    Jiang, Z., Kleinrock, L.: Web prefetching in a mobile environment. IEEE J. Per. Comm. 5, 25–34 (1998)CrossRefGoogle Scholar
  11. 11.
    Jiang, Z., Kleinrock, L.: An adaptive network prefetch scheme. IEEE J. Selec. Are. Comm. 16, 358–368 (1998)CrossRefGoogle Scholar
  12. 12.
    Matsudaira, K.: Making the mobile web faster. Commun. ACM 56, 56 (2013)CrossRefGoogle Scholar
  13. 13.
    Kundu, A., Guha, S.K., Mitra, A., Mukherjee, T.: A new approach in dynamic prediction for user based web page crawling. In: ACM International Conference on Management of Emergent Digital EcoSystems, pp. 166–173 (2010)Google Scholar
  14. 14.
    Kundu, A.: Dynamic Web Prediction Using Asynchronous Mouse Activity. In: Computational Social Network, pp. 257–280. Springer (2012)Google Scholar
  15. 15.
    Helsen, W.F., Elliott, D., Starkes, J.L., Ricker, K.L.: Temporal and Spatial Coupling of Point of Gaze and Hand Movements in Aiming. J. Mot. Behav. 30, 249–259 (1998)CrossRefGoogle Scholar
  16. 16.
    Smith, B.A., Ho, J., Ark, W., Zhai, S.: Hand eye coordination patterns in target selection. In: Symposium on Eye Tracking Research & Applications (2000)Google Scholar
  17. 17.
    Salvucci, D.D., Anderson, J.R.: Intelligent gaze-added interfaces. In: ACM CHI 2000: The SIGCHI Conference on Human Factors in Computing Systems (2000)Google Scholar
  18. 18.
    World Wide Web Consortium, Document Object Model (DOM), http://www.w3.org/DOM/2005
  19. 19.
    Data Preloading Technique Prototype, http://airhook.yonsei.ac.kr

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • Seungyup Lee
    • 1
  • Juwan Yoo
    • 1
  • Da Young Ju
    • 2
  1. 1.School of Integrated TechnologyYonsei UniversitySouth Korea
  2. 2.Yonsei Institute of Convergence TechnologyYonsei UniversitySouth Korea

Personalised recommendations