Evidence-Based Error Analysis: Supporting the Design of Error-Tolerant Systems

  • Becky L. Hooey
  • Marco Aurisicchio
  • Robert Bracewell
  • David C. Foyle
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8512)


This paper proposes an evidence-based process and engineering design tool for linking human error identification taxonomies, and human error prevention and mitigation design principles with the system engineering design process. The process synthesizes the design evidence generated and used during the design and analysis process to clearly demonstrate that credible error threats have been identified and considered appropriately in the design of the system. In doing so, it supports the designer in managing design solutions across the entire design process, leaves a design trace that is transparent and auditable by other designers, managers, or certification experts, and manages the complex interactions among other systems and sub-systems.


error-tolerant design human error design rationale designVUE 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Rasmussen, J.: Skills, Rules, and Knowledge: Signals, Signs and Symbols and Other Distinctions in Human Performance Models. IEEE Transactions: SMC-13, 257–267 (1983)Google Scholar
  2. 2.
    Rouse, W.B., Rouse, S.H.: Analysis and Classification of Human Error. IEEE Transactions: SMC-13, 539–549 (1983)Google Scholar
  3. 3.
    Norman, D.: The Design of Everyday Things. Basic Books, New York (2002)Google Scholar
  4. 4.
  5. 5.
  6. 6.
    Denney, E., Pai, G.: A Lightweight Methodology for Safety Case Assembly. In: Ortmeier, F., Lipaczewski, M. (eds.) SAFECOMP 2012. LNCS, vol. 7612, pp. 1–12. Springer, Heidelberg (2012)Google Scholar
  7. 7.
    Denney, E.W., Pai, G.J., Habli, I.: Perspectives on Software Safety Case Development for Unmanned Aircraft. In: 42nd Annual IEEE/IFIP International Conference on Dependable Systems and Networks (DSN) (June 2012)Google Scholar
  8. 8.
    Goodenough, J.B., Barry, M.R.: Evaluating Hazard Mitigations with Dependability Cases. White Paper (April 2009),
  9. 9.
    Baroni, P., Romano, M., Toni, F., Aurisicchio, M., Bertanza, G.: An Argumentation-based Approach for Automatic Evaluation of Design Debates. In: Leite, J., Son, T.C., Torroni, P., van der Torre, L., Woltran, S. (eds.) CLIMA XIV 2013. LNCS, vol. 8143, pp. 340–356. Springer, Heidelberg (2013)CrossRefGoogle Scholar
  10. 10.
  11. 11.
    Rasmussen, J., Vicente, K.J.: Coping with Human Errors through System Design: Implications for Ecological Interface Design. Int. J. Man-Mach. Stud. 31, 517–534 (1989)CrossRefGoogle Scholar
  12. 12.
    Embrey, D.E.: SHERPA: A Systematic Human Error Reduction and Prediction Approach. In: International Meeting on Advances in Nuclear Power Systems, Knoxville, Tennessee (1986)Google Scholar
  13. 13.
    Neogy, P., Hanson, A.L., Davis, P.R., Fenstermacher, T.E.: Hazard and Barrier Analysis Guidance Document. Department of Energy, Office of Operating Experience Analysis and Feedback, Report No. EH-33 (1996)Google Scholar
  14. 14.
    Reinach, S., Viale, A., Green, D.: Human Error Investigation Software Tool (HEIST). Final Report (2007)Google Scholar
  15. 15.
    Marshall, A., Stanton, N., Young, M., Salmon, P., Harris, D., Demagalski, J., Waldmann, T., Dekker, S.: Development of the Human Error Template – A New Methodology for Assessing Design Induced Errors on Aircraft Flight Decks. Final Report (2003)Google Scholar
  16. 16.
    Salmon, P., Stanton, N.A., Walker, G.: Human Factors Design Methods Review (2003). HFIDTC/WP1.3.2/1 v 1 (2003)Google Scholar
  17. 17.
    Chen-Wing, S.L.N., Davey, E.C.: Designing to Avoid Human Error Consequences. In: Second Workshop on Human Error, Safety, and System Development, Seattle (1998)Google Scholar
  18. 18.
    Buckingham Shum, S., Hammond, N.: Argumentation-based Design Rationale: What Use at What Cost? Int. J. Hum-Comput. St. 40(4), 603–652 (1994)CrossRefGoogle Scholar
  19. 19.
    Lee, J.: Design Rationale Systems: Understanding the Issues. IEEE Expert 12(3), 78–85 (1997)CrossRefGoogle Scholar
  20. 20.
    Kunz, W., Rittel, H.: Issues as Elements of Information Systems, Working Paper 131, Inst. Urban and Regional Dept., Univ. Calif. at Berkeley (1970)Google Scholar
  21. 21.
    Bracewell, R.H., Wallace, K., Moss, M., Knott, D.: Capturing Design Rationale. Computer Aided Design 41(3), 173–186 (2009)CrossRefGoogle Scholar
  22. 22.
    Aurisicchio, M., Bracewell, R.H.: Capturing an Integrated Design Information Space with a Diagram Based Approach. J. Eng. Design 24(6), 397–428 (2013)CrossRefGoogle Scholar
  23. 23.
    Bakowski, D.L., Hooey, B.L., Foyle, D.C., Wolter, C.A., Cheng, L.W.S.: NextGen Flight Deck Surface Trajectory-based Operations (STBO): Contingency Holds. In: 32nd Digit Avion Syst. Con., Syracuse (2013)Google Scholar
  24. 24.
    Pritchett, A.: Simultaneous Design of Cockpit Display of Traffic Information and Air Traffic Management Procedures. In: 17th Digit Avion Syst. Con., pp. 36/1–36/9. AIAA (1998)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • Becky L. Hooey
    • 1
  • Marco Aurisicchio
    • 2
  • Robert Bracewell
    • 3
  • David C. Foyle
    • 4
  1. 1.NASA Ames Research CenterSan Jose State UniversityMoffett FieldUSA
  2. 2.Department of Mechanical EngineeringImperial College LondonUK
  3. 3.Rolls-RoyceUnited Kingdom
  4. 4.NASA Ames Research CenterMoffett FieldUSA

Personalised recommendations