Exploring B-Learning Scenarios Using Fuzzy Logic-Based Modeling of Users’ LMS Quality of Interaction in Ergonomics and Psychomotor Rehabilitation Academic Courses

  • Sofia B. Dias
  • José A. Diniz
  • Leontios J. Hadjileontiadis
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8512)


The multidisciplinary field of human-computer interaction can be seen as an open-ended concept used to refer to the understanding of different relationships between people (users) and computers. The pedagogical planning within the blended learning environment with the users’ quality of interaction (QoI) with the Learning Management System (LMS) is explored here. The required QoI (both for professors and students) is estimated by adopting a fuzzy logic-based modeling approach, namely FuzzyQoI, applied to LMS Moodle data from two undergraduate courses (i.e., Ergonomics and Psychomotor Rehabilitation) offered by a public higher education institution. In order to facilitate the understanding of the learning context and curricula organization of the both courses, the MindMup tool from the i-Treasures Pedagogical Planner ( is employed. The results presented can inspire LMS administrators to include the measure of QoI and reflect upon issues like system-quality, system-use and user-satisfaction into their current evaluation techniques of LMS based b-learning systems efficiency.


Blended-Learning Scenarios LMS Moodle Quality of Interaction Fuzzy Logic-Based modelling Ergonomics and Psychomotor Rehabilitation courses Human-Computer Interaction Pedagogical Planning i-Treasures 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Myers, B., Hollan, J., Cruz, I., Bryson, S., Bulterman, D., Catarci, T., Citrin, W., Cruz, I., Glinert, E., Grudin, J., Hollan, J., Ioannidis, Y., Jacob, R., John, B., Kurlander, D., Myers, B., Olsen, D., Pausch, R., Shieber, S., Shneiderman, B., Stasko, J., Strong, G., Wittenburg, K.: Strategic directions in human-computer interaction. ACM Computing Surveys (CSUR) 28(4), 794–809 (1996)CrossRefGoogle Scholar
  2. 2.
    Redecker, C., Ala-Mutka, K., Bacigalupo, M., Ferrari, A., Punie, Y.: Learning 2.0: The impact of web 2.0 Innovations on Education and Training in Europe. Joint Research Centre (JRC)-Institute for Prospective Technological Studies (2009),
  3. 3.
    Pirani, Z., Sasikumar, M.: Accessibility Issues in Learning Management Systems for Learning Disabled: A Survey. In: Thampi, S.M., Abraham, A., Pal, S.K., Rodriguez, J.M.C. (eds.) Recent Advances in Intelligent Informatics. AISC, vol. 235, pp. 253–264. Springer, Heidelberg (2014)CrossRefGoogle Scholar
  4. 4.
    Oliver, M., Trigwell, K.: Can ‘Blended Learning’ Be Redeemed? E-learning and Digital Media 2(1), 17–26 (2005)Google Scholar
  5. 5.
    Aberdour, M.: Open Source Learning Management System. EPIC Whitepaper (2007),
  6. 6.
    Graf, S.: Adaptivity in Learning Management Systems Focussing on Learning Styles. PhD Thesis, Vienna University of Technology, AU (2007),
  7. 7.
    Kladich, S., Ives, C., Parker, N., Graf, S.: Extending the AAT Tool with a User-Friendly and Powerful Mechanism to Retrieve Complex Information from Educational Log Data. In: Holzinger, A., Pasi, G. (eds.) HCI-KDD 2013. LNCS, vol. 7947, pp. 334–341. Springer, Heidelberg (2013)CrossRefGoogle Scholar
  8. 8.
    Conole, G., de Laat, M., Darby, J.: ‘Disruptive technologies’, ’pedagogical innovation’: What’s new? Findings from an in-depth study of students’ use and perception of technology. Comput. Educ. 50(2), 511–524 (2008)CrossRefGoogle Scholar
  9. 9.
    Levy, Y.A., Weld, S.D.: Intelligent internet systems. Artif. Intel. 118, 1–14 (2000)CrossRefGoogle Scholar
  10. 10.
    Hadjileontiadou, S.J., Nikolaidou, G.N., Hadjileontiadis, L.J., Balafoutas, G.N.: On enhancing on-line collaboration using fuzzy logic modeling. Educ. Tech. Soc. 7(2), 68–81 (2004)Google Scholar
  11. 11.
    Tsoukalas, H.L., Uhrig, R.E.: Fuzzy and neural approaches in engineering. Wiley & Sons, New York (1996)Google Scholar
  12. 12.
    Dias, S.B., Diniz, J.A.: FuzzyQoI Model: A fuzzy logic-based modelling of users’ quality of interaction with a learning management system under blended learning. Comput. Educ. 69, 38–59 (2013), doi:10.1016/j.compedu.2013.06.016CrossRefGoogle Scholar
  13. 13.
    Olimpo, G., Bottino, R.M., Earp, J., Ott, M., Pozzi, F., Tavella, M.: Pedagogical plans as communication oriented objects. Comput. Educ. 55(2), 476–488 (2010)CrossRefGoogle Scholar
  14. 14.
    Bottino, R., Earp, J., Olimpo, G., Ott, M., Pozzi, F., Tavella, M.: Supporting the design of pilot learning activities with the Pedagogical Plan Manager. In: Kendall, M., Samways, B. (eds.) Learning to live in the Knowledge Society. Springer (2008)Google Scholar
  15. 15.
    Dias, S.B., Diniz, J.A., Hadjileontiadis, L.J.: On Enhancing Blended-Learning Scenarios Through Fuzzy Logic-Based Modeling of Users’ LMS Quality of Interaction: The Rare & Contemporary Dance Paradigms. In: Grammalidis, N., Dimitropoulos, K., Ioannides, M. (eds.) (Co-Chairs) IAMICH/VISIGRAPP 2014, Lisbon, Portugal, January 5-8 (2014a)Google Scholar
  16. 16.
    Dias, S.B., Diniz, J.A., Hadjileontiadis, L.J.: Towards an Intelligent Learning Management System Under Blended Learning: Trends, Profiles and Modelling Perspectives. In: Kacprzyk, J., Jain, L.C. (eds.) Intelligent Systems Reference Library, vol. 59, Springer, Heidelberg (2014b) ISBN: 978-3-319-02077-8Google Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • Sofia B. Dias
    • 1
  • José A. Diniz
    • 1
  • Leontios J. Hadjileontiadis
    • 2
  1. 1.Faculty of Human KineticsUniversity of LisbonLisbonPortugal
  2. 2.Department of Electrical and Computer EngineeringAristotle University of ThessalonikiThessalonikiGreece

Personalised recommendations