Advertisement

A Systematic Approach for Providing Personalized Pedagogical Recommendations Based on Educational Data Mining

  • Ranilson Oscar Araujo Paiva
  • Ig Ibert Bittencourt Santa Pinto
  • Alan Pedro da Silva
  • Seiji Isotani
  • Patricia Jaques
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8474)

Abstract

This work presents an approach to assist teachers, tutors and students from online learning environments. It is a four-steps process called Pedagogical Recommendation Process that uses the coordinated efforts of human actors (pedagogical and technological specialists) and artificial actors (computational artifacts). The process’ objective is to find relevant information in educational data to help creating personalized recommendations. Using the process it was possible to detect issues within a learning environment (UFAL Línguas), and discovered why some students were facing difficulties, and what other students were doing in order to succeed in the course. This information was used to personalize pedagogical recommendations.

Keywords

Pedagogical Recommendation Process Personalized Recommendations Educational Data Mining Online Learning Environments Online Courses 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Bayer, J., Budzovska, H., Geryk, J., Obsivac, T., Popelinsky, L.: Predicting drop-out from social behaviour of students. In: Educational Data Mining Conference (2012)Google Scholar
  2. 2.
    Bittencourt, I.I., de Barros, C.E., Silva, M., Soares, E.: A Computational Model for Developing Semantic Web-based Educational Systems. Knowledge-Based Systems 22, 302–315 (2009)CrossRefGoogle Scholar
  3. 3.
    Chrysafiadi, K., Virvou, M.: Student modeling approaches: A literature review for the last decade. Expert Syst. Appl. 40(11), 4715–4729 (2013)CrossRefGoogle Scholar
  4. 4.
    Gibert, K., Izquierdo, J., Holmes, G., Athanasiadis, I., Comas, J., Snchez-Marr, M.: On the role of pre and post-processing in environmental data mining. In: International Congress on Environmental Modeling and Software (2008)Google Scholar
  5. 5.
    Kavanagh, J., Hall, W.: Grand challenges in computing research 2008. In: Grand Challenges in Computing Research, GCCR 2008. UK Computer Research Committee, United Kingdom (2008)Google Scholar
  6. 6.
    Moran, J.M.: O que aprendi sobre avaliação em cursos semi-presenciais. In: Silva, M., Santos, E. (eds.) Avaliação da Aprendizagem em Educação Online. Loyola, São Paulo (2006), http://www.eca.usp.br/prof/moran/aprendi.html (accessed in: July 3, 2013)
  7. 7.
    Paiva, R.O.A., Bittencourt, I.I., Pacheco, H., da Silva, A.P., Jaques, P., Isotani, S.: Mineração de Dados e a Gestão Inteligente da Aprendizagem: Desafios e Direcionamentos in XXXII Congresso da Sociedade Brasileira de Computação (2012)Google Scholar
  8. 8.
    Park, J.-H., Choi, H.J.: Factors Influencing Adult Learners’ Decision to Drop Out or Persist in Online Learning. Educational Technology & Society 12, 207–217 (2009)Google Scholar
  9. 9.
    Witten, I., Frank, E., Hall, M.: Data Mining: Practical Machine Learning Tools and Techniques, 3rd edn. Massachusetts (2011)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • Ranilson Oscar Araujo Paiva
    • 1
  • Ig Ibert Bittencourt Santa Pinto
    • 2
  • Alan Pedro da Silva
    • 2
  • Seiji Isotani
    • 3
  • Patricia Jaques
    • 4
  1. 1.COPINUniversidade Federal de Campina GrandeCampina GrandeBrasil
  2. 2.NEES, ICUniversidade Federal de AlagoasMaceióBrasil
  3. 3.ICMCUniversidade de São PauloSão CarlosBrasil
  4. 4.PIPCAUniversidade do Vale do Rio dos SinosSão LeopoldoBrasil

Personalised recommendations