Advertisement

Toward Automatic Inference of Causal Structure in Student Essays

  • Peter Hastings
  • Simon Hughes
  • Anne Britt
  • Dylan Blaum
  • Patty Wallace
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8474)

Abstract

With an increasing focus on science and technology in education comes an awareness that students must be able to understand and integrate scientific explanations from multiple sources. As part of a larger project aimed at deepening our understanding of student processes for integrating multiple sources of information, we are developing machine learning and natural language processing techniques for evaluating students’ argumentative essays. In previous work, we have focused on identifying conceptual elements of the essays. In this paper, we present a method for inferring the causal structure of student essays. We used a standard parser to derive grammatical dependencies of the essay and converted them to logic statements. Then a simple inference mechanism was used to identify concepts linked to syntactic connectors by these dependencies. The results suggest that we will soon be able to provide explicit feedback that enables teachers and students to improve comprehension.

Keywords

Reading Argumentation Natural language processing Machine learning 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Bengio, Y., Ducharme, R., Vincent, P., Janvin, C.: A neural probabilistic language model. Journal of Machine Learning Research 3, 1137–1155 (2003)zbMATHGoogle Scholar
  2. 2.
    Bird, S., Klein, E., Loper, E.: Natural Language processing with Python Analyzing Text with the Natural Language Toolkit. O’Reilly (2009)Google Scholar
  3. 3.
    Chi, M., Roscoe, R., Slotta, J., Roy, M., Chase, C.: Misconceived causal explanations for emergent processes. Cognitive Science 36, 1–61 (2012)CrossRefGoogle Scholar
  4. 4.
    Cohen, R.: Analyzing the structure of argumentative discourse. Computational Linguistics 13(1-2), 11–24 (1987)Google Scholar
  5. 5.
    Collobert, R., Weston, J.: A unified architecture for natural language processing: Deep neural networks with multitask learning. In: Cohen, W., McCallum, A., Roweis, S. (eds.) ICML, vol. 307, pp. 160–167. ACM (2008)Google Scholar
  6. 6.
    de Marneffe, M., Manning, C.: The Stanford typed dependencies representation. In: COLING 2008 Workshop on Cross-framework and Cross-domain Parser Evaluation (2008), http://nlp.stanford.edu/pubs/dependencies-coling08.pdf
  7. 7.
    Girju, R., Nakov, P., Nastase, V., Szpakowicz, S., Turney, P., Yuret, D.: Semeval-2007 task 04: Classification of semantic relations between nominals. In: Proceedings of the 4th International Workshop on Semantic Evaluations (SemEval 2007), p. 1318 (2007), http://acl.ldc.upenn.edu/W/W07/W07-2003.pdf
  8. 8.
    Hastings, P., Hughes, S., Magliano, J., Goldman, S., Lawless, K.: Text categorization for assessing multiple documents integration, or John Henry visits a data mine. In: Biswas, G., Bull, S., Kay, J., Mitrovic, A. (eds.) AIED 2011. LNCS, vol. 6738, pp. 115–122. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  9. 9.
    Hastings, P., Hughes, S., Magliano, J., Goldman, S., Lawless, K.: Assessing the use of multiple sources in student essays. Behavior Research Methods 44(3), 622–633 (2012)CrossRefGoogle Scholar
  10. 10.
    Hughes, S., Hastings, P., Magliano, J., Goldman, S., Lawless, K.: Automated approaches for detecting integration in student essays. In: Cerri, S.A., Clancey, W.J., Papadourakis, G., Panourgia, K. (eds.) ITS 2012. LNCS, vol. 7315, pp. 274–279. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  11. 11.
    Recasens, M., de Marneffe, M.C., Potts, C.: The life and death of discourse entities: Identifying singleton mentions. In: HLT-NAACL, pp. 627–633. The Association for Computational Linguistics (2013)Google Scholar
  12. 12.
    Rink, B., Bejan, C.A., Harabagiu, S.M.: Learning textual graph patterns to detect causal event relations. In: Guesgen, H.W., Murray, R.C. (eds.) FLAIRS Conference. AAAI Press (2010)Google Scholar
  13. 13.
    Socher, R., Pennington, J., Huang, E., Ng, A., Manning, C.: Semi-supervised recursive autoencoders for predicting sentiment distributions. In: EMNLP, pp. 151–161. ACL (2011)Google Scholar
  14. 14.
    Socher, R., Bauer, J., Manning, C.D., Ng, A.Y.: Parsing with compositional vector grammars. In: ACL (1), pp. 455–465. Association for Computer Linguistics (2013)Google Scholar
  15. 15.
    White, B., Frederiksen, J.: Causal model progressions as a foundation for intelligent learning environments. Artificial Intelligence 42, 99–157 (1990)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • Peter Hastings
    • 1
  • Simon Hughes
    • 1
  • Anne Britt
    • 2
  • Dylan Blaum
    • 2
  • Patty Wallace
    • 2
  1. 1.DePaul UniversityChicagoUSA
  2. 2.Northern Illinois UniversityDeKalbUSA

Personalised recommendations