Can Diagrams Predict Essay Grades?

  • Collin F. Lynch
  • Kevin D. Ashley
  • Min Chi
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8474)


Diagrammatic models of argument have grown in prominence in recent years. While they have been applied in a number of tutoring contexts, it has not yet been shown that student-produced diagrams can be used to effectively grade students or predict their future performance. We show that manually-assigned diagram grades and automatic structural features of argument diagrams can be used to predict students’ future essay grades, thus supporting the use of argument diagrams for instruction. We also show that the automatic features are competitive with expert human grading despite the fact that semantic content was ignored in automatic processing.


Argument Diagrams Essay Grading Argumentation Educational Datamining Writing Automatic Grading 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Chryssafidou, E., Sharples, M.: Computer-supported planning of essay argument structure. In: Proc. of the 5th International Conference of Argumentation (2002)Google Scholar
  2. 2.
    Harrell, M., Wetzel, D.: Improving first-year writing using argument diagramming. In: Knauff, M., Sebanz, N., Pauen, M., Wachsmuth, I. (eds.) Proc. of the 35th Annual Conf. of the Cognitive Science Society, pp. 2488–2493Google Scholar
  3. 3.
    Loll, F., Pinkwart, N.: Lasad: Flexible representations for computer-based collaborative argumentation. Int. J. Hum.-Comput. Stud. 71(1), 91–109 (2013)CrossRefGoogle Scholar
  4. 4.
    Lynch, C.F.: The Diagnosticity of Argument Diagrams Univ. of Pittsburgh (2014)Google Scholar
  5. 5.
    Lynch, C.F., Ashley, K.D., Falakmassir, M.H.: Comparing argument diagrams. In: Schäfer, B. (ed.) JURIX 2012: The 25th Annual Conference, vol. 250, pp. 81–90. IOS Press, University of Amsterdam (2012)Google Scholar
  6. 6.
    Lynch, C.F., Ashley, K.D., Pinkwart, N., Aleven, V.: Argument graph classification with genetic programming and c4.5. In: de Baker, R.S.J., Barnes, T., Beck, J.E. (eds.) EDM, pp. 137–146 (2008),
  7. 7.
    Pinkwart, N., Ashley, K.D., Lynch, C.F., Aleven, V.: Evaluating an intelligent tutoring system for making legal arguments with hypotheticals. International Journal of Artificial Intelligence in Education 19(4), 401–424 (2009)Google Scholar
  8. 8.
    Scheuer, O., Niebuhr, S., Dragon, T., McLaren, B.M., Pinkwart, N.: Adaptive support for graphical argumentation - the LASAD approach. IEEE Learning Technology Newsletter 14(1), 8–11 (2012)Google Scholar
  9. 9.
    Scheuer, O., Loll, F., Pinkwart, N., McLaren, B.: Computer-supported argumentation: A review of the state of the art. International Journal of Computer-Supported Collaborative Learning 5, 43–102 (2010)CrossRefGoogle Scholar
  10. 10.
    Shum, S.J.B., MacLean, A., Bellotti, V.M.E., Hammond, N.V.: Graphical argumentation and design cognition. HCI 12(3), 267–300 (1997)CrossRefGoogle Scholar
  11. 11.
    Suthers, D.D.: Empirical studies of the value of conceptually explicit notations in collaborative learning. In: Okada, A., Buckingham Shum, S., Sherborne, T. (eds.) Knowledge Cartography, pp. 1–23. Springer (2008)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • Collin F. Lynch
    • 1
  • Kevin D. Ashley
    • 1
  • Min Chi
    • 2
  1. 1.ISP, LRDC, and School of Law University of PittsburghPittsburghUSA
  2. 2.North Carolina State UniversityRaleighUSA

Personalised recommendations