Beyond Knowledge Tracing: Modeling Skill Topologies with Bayesian Networks

  • Tanja Käser
  • Severin Klingler
  • Alexander Gerhard Schwing
  • Markus Gross
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8474)


Modeling and predicting student knowledge is a fundamental task of an intelligent tutoring system. A popular approach for student modeling is Bayesian Knowledge Tracing (BKT). BKT models, however, lack the ability to describe the hierarchy and relationships between the different skills of a learning domain. In this work, we therefore aim at increasing the representational power of the student model by employing dynamic Bayesian networks that are able to represent such skill topologies. To ensure model interpretability, we constrain the parameter space. We evaluate the performance of our models on five large-scale data sets of different learning domains such as mathematics, spelling learning and physics, and demonstrate that our approach outperforms BKT in prediction accuracy on unseen data across all learning domains.


Bayesian networks parameter learning constrained optimization prediction Knowledge Tracing 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Baker, C., Tenenbaum, J.B., Saxe, R.: Bayesian models of human action understanding. In: Proc. NIPS (2005)Google Scholar
  2. 2.
    Baschera, G.-M., Busetto, A.G., Klingler, S., Buhmann, J.M., Gross, M.: Modeling Engagement Dynamics in Spelling Learning. In: Biswas, G., Bull, S., Kay, J., Mitrovic, A. (eds.) AIED 2011. LNCS, vol. 6738, pp. 31–38. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  3. 3.
    Conati, C., Gertner, A., VanLehn, K.: Using Bayesian Networks to Manage Uncertainty in Student Modeling. UMUAI (2002)Google Scholar
  4. 4.
    Corbett, A.T., Anderson, J.R.: Knowledge tracing: Modeling the acquisition of procedural knowledge. UMUAI (1994)Google Scholar
  5. 5.
    Frank, M.C., Tenenbaum, J.B.: Three ideal observer models for rule learning in simple languages. Cognition (2010)Google Scholar
  6. 6.
    Friedman, N., Murphy, K., Russell, S.: Learning the structure of dynamic probabilistic networks. In: Proc. UAI (1998)Google Scholar
  7. 7.
    Gross, M., Vögeli, C.: A Multimedia Framework for Effective Language Training. Computer & Graphics (2007)Google Scholar
  8. 8.
    Horvitz, E., Breese, J., Heckerman, D., Hovel, D., Rommelse, K.: The Lumière Project: Bayesian User Modeling for Inferring the Goals and Needs of Software Users. In: Proc. UAI (1998)Google Scholar
  9. 9.
    Käser, T., Baschera, G.M., Busetto, A.G., Klingler, S., Solenthaler, B., Buhmann, J.M., Gross, M.: Towards a Framework for Modelling Engagement Dynamics in Multiple Learning Domains. IJAIED (2012)Google Scholar
  10. 10.
    Käser, T., Baschera, G.M., Kohn, J., Kucian, K., Richtmann, V., Grond, U., Gross, M., von Aster, M.: Design and evaluation of the computer-based training program Calcularis for enhancing numerical cognition. Front. Psychol. (2013)Google Scholar
  11. 11.
    Käser, T., Busetto, A.G., Solenthaler, B., Baschera, G.M., Kohn, J., Kucian, K., von Aster, M., Gross, M.: Modelling and Optimizing Mathematics Learning in Children. IJAIED (2013)Google Scholar
  12. 12.
    Käser, T., Schwing, A.G., Hazan, T., Gross, M.: Computational Education using Latent Structured Prediction. To appear in Proc. AISTATS (2014)Google Scholar
  13. 13.
    Käser, T., Busetto, A.G., Baschera, G.-M., Kohn, J., Kucian, K., von Aster, M., Gross, M.: Modelling and optimizing the process of learning mathematics. In: Cerri, S.A., Clancey, W.J., Papadourakis, G., Panourgia, K. (eds.) ITS 2012. LNCS, vol. 7315, pp. 389–398. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  14. 14.
    Koedinger, K.R., Anderson, J.R., Hadley, W.H., Mark, M.A.: Intelligent tutoring goes to school in the big city. IJAIED (1997)Google Scholar
  15. 15.
    Koedinger, K., Baker, R., Cunningham, K., Skogsholm, A., Leber, B., Stamper, J.: A Data Repository for the EDM community: The PSLC DataShop. In: Handbook of Educational Data Mining. CRC Press, Boca Raton (2010)Google Scholar
  16. 16.
    Lafferty, J., McCallum, A., Pereira, F.C.: Conditional random fields: Probabilistic models for segmenting and labeling sequence data. In: Proc. ICML (2001)Google Scholar
  17. 17.
    Mayo, M., Mitrovic, A.: Optimising its behaviour with bayesian networks and decision theory. IJAIED (2001)Google Scholar
  18. 18.
    Pardos, Z.A., Heffernan, N.T.: Modeling Individualization in a Bayesian Networks Implementation of Knowledge Tracing. In: De Bra, P., Kobsa, A., Chin, D. (eds.) UMAP 2010. LNCS, vol. 6075, pp. 255–266. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  19. 19.
    Pardos, Z.A., Trivedi, S., Heffernan, N.T., Sárközy, G.N.: Clustered knowledge tracing. In: Cerri, S.A., Clancey, W.J., Papadourakis, G., Panourgia, K. (eds.) ITS 2012. LNCS, vol. 7315, pp. 405–410. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  20. 20.
    Pavlik, P.I., Cen, H., Koedinger, K.R.: Performance Factors Analysis - A New Alternative to Knowledge Tracing. In: Proc. AIED (2009)Google Scholar
  21. 21.
    Reye, J.: Student Modelling Based on Belief Networks. IJAIED (2004)Google Scholar
  22. 22.
    Schwing, A.G., Hazan, T., Pollefeys, M., Urtasun, R.: Efficient Structured Prediction with Latent Variables for General Graphical Models. In: Proc. ICML (2012)Google Scholar
  23. 23.
    Wang, Y., Beck, J.: Class vs. Student in a Bayesian Network Student Model. In: Lane, H.C., Yacef, K., Mostow, J., Pavlik, P. (eds.) AIED 2013. LNCS, vol. 7926, pp. 151–160. Springer, Heidelberg (2013)CrossRefGoogle Scholar
  24. 24.
    Wang, Y., Heffernan, N.T.: The student skill model. In: Cerri, S.A., Clancey, W.J., Papadourakis, G., Panourgia, K. (eds.) ITS 2012. LNCS, vol. 7315, pp. 399–404. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  25. 25.
    Yudelson, M.V., Koedinger, K.R., Gordon, G.J.: Individualized Bayesian Knowledge Tracing Models. In: Proc. AIED (2013)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • Tanja Käser
    • 1
  • Severin Klingler
    • 1
  • Alexander Gerhard Schwing
    • 1
    • 2
  • Markus Gross
    • 1
  1. 1.Department of Computer ScienceETH ZurichSwitzerland
  2. 2.Department of Computer ScienceUniversity of TorontoCanada

Personalised recommendations