Skip to main content

Increased Vulnerability of the Human Ventricle to Re-entrant Excitation in hERG Linked SQT1

  • Chapter
  • First Online:
Modelling the Short QT Syndrome Gene Mutations

Part of the book series: Springer Theses ((Springer Theses))

  • 454 Accesses

Abstract

The SQTS was first reported as a clinical entity in 2000 [1].

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Gussak I, Brugada P, Brugada J, Wright RS, Kopecky SL, Chaitman BR et al (2000) Idiopathic short QT interval: a new clinical syndrome? Cardiology 94(2):99–102

    Article  Google Scholar 

  2. Schimpf R, Wolpert C, Gaita F, Giustetto C, Borggrefe M (2005) Short QT syndrome. Cardiovasc Res 67(3):357–366

    Article  Google Scholar 

  3. Maury P, Extramiana F, Sbragia P, Giustetto C, Schimpf R, Duparc A et al (2008) Short QT syndrome. Update on a recent entity. Arch Cardiovasc Dis 101(11–12):779–786

    Article  Google Scholar 

  4. Patel C, Antzelevitch C (2008) Cellular basis for arrhythmogenesis in an experimental model of the SQT1 form of the short QT syndrome. Heart Rhythm 5(4):585–590

    Article  Google Scholar 

  5. Brugada R, Hong K, Dumaine R, Cordeiro J, Gaita F, Borggrefe M et al (2004) Sudden death associated with short-QT syndrome linked to mutations in HERG. Circulation 109(1):30–35

    Article  Google Scholar 

  6. Hong K, Bjerregaard P, Gussak I, Brugada R (2005) Short QT syndrome and atrial fibrillation caused by mutation in KCNH2. J Cardiovasc Electrophysiol 16(4):394–396

    Article  Google Scholar 

  7. Bellocq C, van Ginneken ACG, Bezzina CR, Alders M, Escande D, Mannens MMAM et al (2004) Mutation in the KCNQ1 gene leading to the short QT-interval syndrome. Circulation 109(20):2394–2397

    Article  Google Scholar 

  8. Priori SG, Pandit SV, Rivolta I, Berenfeld O, Ronchetti E, Dhamoon A et al (2005) A novel form of short QT syndrome (SQT3) is caused by a mutation in the KCNJ2 gene. Circ Res 96(7):800–807

    Article  Google Scholar 

  9. Hong K, Piper DR, Diaz-Valdecantos A, Brugada J, Oliva A, Burashnikov E et al (2005) De novo KCNQ1 mutation responsible for atrial fibrillation and short QT syndrome in utero. Cardiovasc Res 68(3):433–440

    Article  Google Scholar 

  10. McPate MJ, Duncan RS, Milnes JT, Witchel HJ, Hancox JC (2005) The N588K-HERG K+ channel mutation in the “short QT syndrome”: mechanism of gain-in-function determined at 37 degrees C. Biochem Biophys Res Commun 334(2):441–449

    Article  Google Scholar 

  11. Cordeiro JM, Brugada R, Wu YS, Hong K, Dumaine R (2005) Modulation of I(Kr) inactivation by mutation N588K in KCNH2: a link to arrhythmogenesis in short QT syndrome. Cardiovasc Res 67(3):498–509

    Article  Google Scholar 

  12. McPate MJ, Zhang H, Adeniran I, Cordeiro JM, Witchel HJ, Hancox JC (2009) Comparative effects of the short QT N588K mutation at 37 degrees C on hERG K + channel current during ventricular, Purkinje fibre and atrial action potentials: an action potential clamp study. J Physiol Pharmacol 60(1):23–41

    Google Scholar 

  13. Mitcheson JS, Sanguinetti MC (1999) Biophysical properties and molecular basis of cardiac rapid and slow delayed rectifier potassium channels. Cell Physiol Biochem 9(4–5):201–216

    Article  Google Scholar 

  14. Antzelevitch C, Sicouri S (1994) Clinical relevance of cardiac arrhythmias generated by afterdepolarizations. Role of M cells in the generation of U waves, triggered activity and torsade de pointes. J Am Coll Cardiol 23(1):259–277

    Article  Google Scholar 

  15. Extramiana F, Antzelevitch C (2004) Amplified transmural dispersion of repolarization as the basis for arrhythmogenesis in a canine ventricular-wedge model of short-QT syndrome. Circulation 110(24):3661–3666

    Article  Google Scholar 

  16. Weiss DL, Seemann G, Sachse FB, Dössel O (2005) Modelling of short QT syndrome in a heterogeneous model of the human ventricular wall. Europace 7(Suppl 2):105–117

    Article  Google Scholar 

  17. Zhang H, Hancox JC (2004) In silico study of action potential and QT interval shortening due to loss of inactivation of the cardiac rapid delayed rectifier potassium current. Biochem Biophys Res Commun 322(2):693–699

    Article  Google Scholar 

  18. Itoh H, Horie M, Ito M, Imoto K (2006) Arrhythmogenesis in the short-QT syndrome associated with combined HERG channel gating defects: a simulation study. Circ J 70(4):502–508

    Article  Google Scholar 

  19. Kharche S, Garratt CJ, Boyett MR, Inada S, Holden AV, Hancox JC et al (2008) Atrial proarrhythmia due to increased inward rectifier current (I(K1)) arising from KCNJ2 mutation—a simulation study. Prog Biophys Mol Biol 98(2–3):186–197

    Article  Google Scholar 

  20. El Harchi A, McPate MJ, Zhang YH, Zhang H, Hancox JC (2010) Action potential clamp and mefloquine sensitivity of recombinant “I KS” channels incorporating the V307L KCNQ1 mutation. J Physiol Pharmacol 61(2):123–131

    Google Scholar 

  21. Lu Y, Mahaut-Smith MP, Varghese A, Huang CL, Kemp PR, Vandenberg JI (2001) Effects of premature stimulation on HERG K(+) channels. J Physiol (Lond) 537(Pt 3):843–851

    Article  Google Scholar 

  22. Brugada R, Hong K, Cordeiro JM, Dumaine R (2005) Short QT syndrome. CMAJ 173(11):1349–1354

    Article  Google Scholar 

  23. Zhang H, Kharche S, Holden AV, Hancox JC (2008) Repolarisation and vulnerability to re-entry in the human heart with short QT syndrome arising from KCNQ1 mutation–a simulation study. Prog Biophys Mol Biol 96(1–3):112–131

    Article  Google Scholar 

  24. Gussak I, Brugada P, Brugada J, Antzelevitch C, Osbakken M, Bjerregaard P (2002) ECG phenomenon of idiopathic and paradoxical short QT intervals. Card Electrophysiol Rev 6(1–2):49–53

    Article  Google Scholar 

  25. Couderc J-P, Lopes CM (2010) Short and long QT syndromes: does QT length really matter? J Electrocardiol 43(5):396–399

    Article  Google Scholar 

  26. Patel U, Pavri BB (2009) Short QT syndrome: a review. Cardiol Rev 17(6):300–303

    Article  Google Scholar 

  27. Giustetto C, Di Monte F, Wolpert C, Borggrefe M, Schimpf R, Sbragia P et al (2006) Short QT syndrome: clinical findings and diagnostic-therapeutic implications. Eur Heart J 27(20):2440–2447

    Article  Google Scholar 

  28. Gaita F, Giustetto C, Bianchi F, Schimpf R, Haissaguerre M, Calò L et al (2004) Short QT syndrome: pharmacological treatment. J Am Coll Cardiol 43(8):1494–1499

    Article  Google Scholar 

  29. Szabó G, Szentandrássy N, Bíró T, Tóth BI, Czifra G, Magyar J et al (2005) Asymmetrical distribution of ion channels in canine and human left-ventricular wall: epicardium versus midmyocardium. Pflugers Arch 450(5):307–316

    Article  Google Scholar 

  30. Gima K, Rudy Y (2002) Ionic current basis of electrocardiographic waveforms: a model study. Circ Res 90(8):889–896

    Article  Google Scholar 

  31. Yan GX, Shimizu W, Antzelevitch C (1998) Characteristics and distribution of M cells in arterially perfused canine left ventricular wedge preparations. Circulation 98(18):1921–1927

    Article  Google Scholar 

  32. Drouin E, Charpentier F, Gauthier C, Laurent K, Le Marec H (1995) Electrophysiologic characteristics of cells spanning the left ventricular wall of human heart: evidence for presence of M cells. J Am Coll Cardiol 26(1):185–192

    Article  Google Scholar 

  33. Zhang H, Wang J, Yang L, Wu R-J, Mei X, Zhao W (2011) Vulnerability in simulated ischemic ventricular transmural tissues. Chin J Physiol 54(6):427–434

    Google Scholar 

  34. Chen XZ, Zhang H, Jin YB, Yang L (2009) Vulnerability to unidirectional conduction block and reentry in rabbit left ventricular wedge preparation: effects of stimulation sequence and location. Chin J Physiol 52(1):16–22

    Article  Google Scholar 

  35. Trénor B, Romero L, Ferrero JM Jr, Sáiz J, Moltó G, Alonso JM (2007) Vulnerability to reentry in a regionally ischemic tissue: a simulation study. Ann Biomed Eng 35(10):1756–1770

    Article  Google Scholar 

  36. Qu Z, Garfinkel A, Weiss JN (2006) Vulnerable window for conduction block in a one-dimensional cable of cardiac cells, 1: single extrasystoles. Biophys J 91(3):793–804

    Article  Google Scholar 

  37. Kogan BY, Karplus WJ, Billett BS, Pang AT, Khan SS, Mandel WJ et al (1991) The role of diastolic outward current deactivation kinetics on the induction of spiral waves. Pacing Clin Electrophysiol 14(11 Pt 2):1688–1693

    Article  Google Scholar 

  38. Gollob MH, Redpath CJ, Roberts JD (2011) The short QT syndrome: proposed diagnostic criteria. J Am Coll Cardiol 57(7):802–812

    Article  Google Scholar 

  39. Watanabe H, Makiyama T, Koyama T, Kannankeril PJ, Seto S, Okamura K et al (2010) High prevalence of early repolarization in short QT syndrome. Heart Rhythm 7(5):647–652

    Article  Google Scholar 

  40. Zhou J, Augelli-Szafran CE, Bradley JA, Chen X, Koci BJ, Volberg WA et al (2005) Novel potent human ether-a-go-go-related gene (hERG) potassium channel enhancers and their in vitro antiarrhythmic activity. Mol Pharmacol 68(3):876–884

    Google Scholar 

  41. Sun Y, Quan X-Q, Fromme S, Cox RH, Zhang P, Zhang L et al (2011) A novel mutation in the KCNH2 gene associated with short QT syndrome. J Mol Cell Cardiol 50(3):433–441

    Article  Google Scholar 

  42. Adeniran I, McPate MJW, Witchel HJ, Hancox JC, Zhang H (2011) Increased vulnerability of human ventricle to re-entrant excitation in herg-linked variant 1 short QT syndrome. Plos Comput Biol 7(12):e1002313

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ismail Adeniran .

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Adeniran, I. (2014). Increased Vulnerability of the Human Ventricle to Re-entrant Excitation in hERG Linked SQT1. In: Modelling the Short QT Syndrome Gene Mutations. Springer Theses. Springer, Cham. https://doi.org/10.1007/978-3-319-07200-5_6

Download citation

Publish with us

Policies and ethics