Skip to main content

Representations of Highly-Varying Functions by One-Hidden-Layer Networks

  • Conference paper

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 8467))

Abstract

Limitations of capabilities of one-hidden-layer networks are investigated. It is shown that for networks with Heaviside perceptrons as well as for networks with kernel units used in SVM, there exist large sets of d-variable functions which cannot be tractably represented by these networks, i.e., their representations require numbers of units or sizes of weighs depending on d exponentially. Our results are derived using the concept of variational norm from nonlinear approximation theory and the concentration of measure property of high dimensional Euclidean spaces.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Fine, T.L.: Feedforward Neural Network Methodology. Springer, Heidelberg (1999)

    MATH  Google Scholar 

  2. Chow, T.W.S., Cho, S.Y.: Neural Networks and Computing: Learning Algorithms and Applications. World Scientific (2007)

    Google Scholar 

  3. Leshno, M., Lin, V.Y., Pinkus, A., Schocken, S.: Multilayer feedforward networks with a nonpolynomial activation function can approximate any function. Neural Networks 6, 861–867 (1993)

    Article  Google Scholar 

  4. Pinkus, A.: Approximation theory of the MLP model in neural networks. Acta Numerica 8, 143–195 (1999)

    Article  MathSciNet  Google Scholar 

  5. Park, J., Sandberg, I.: Approximation and radial-basis-function networks. Neural Computation 5, 305–316 (1993)

    Article  Google Scholar 

  6. Mhaskar, H.N.: Versatile Gaussian networks. In: Proc. of IEEE Workshop of Nonlinear Image Processing, pp. 70–73 (1995)

    Google Scholar 

  7. Kůrková, V.: Some comparisons of networks with radial and kernel units. In: Villa, A.E.P., Duch, W., Érdi, P., Masulli, F., Palm, G. (eds.) ICANN 2012, Part II. LNCS, vol. 7553, pp. 17–24. Springer, Heidelberg (2012)

    Chapter  Google Scholar 

  8. Steinwart, I., Christmann, A.: Support Vector Machines. Springer, New York (2008)

    MATH  Google Scholar 

  9. Ito, Y.: Finite mapping by neural networks and truth functions. Mathematical Scientist 17, 69–77 (1992)

    MATH  MathSciNet  Google Scholar 

  10. Micchelli, C.A.: Interpolation of scattered data: Distance matrices and conditionally positive definite functions. Constructive Approximation 2, 11–22 (1986)

    Article  MATH  MathSciNet  Google Scholar 

  11. Kainen, P.C., Kůrková, V., Sanguineti, M.: Dependence of computational models on input dimension: Tractability of approximation and optimization tasks. IEEE Transactions on Information Theory 58, 1203–1214 (2012)

    Article  Google Scholar 

  12. Maiorov, V.: On best approximation by ridge functions. J. of Approximation Theory 99, 68–94 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  13. Maiorov, V., Pinkus, A.: Lower bounds for approximation by MLP neural networks. Neurocomputing 25, 81–91 (1999)

    Article  MATH  Google Scholar 

  14. Bartlett, P.L.: The sample complexity of pattern classification with neural networks: The size of the weights is more important than the size of the network. IEEE Trans. on Information Theory 44, 525–536 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  15. Hinton, G.E., Osindero, S., Teh, Y.W.: A fast learning algorithm for deep belief nets. Neural Computation 18, 1527–1554 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  16. Bengio, Y.: Learning deep architectures for AI. Foundations and Trends in Machine Learning 2, 1–127 (2009)

    Article  MATH  Google Scholar 

  17. Bengio, Y., Delalleau, O., Roux, N.L.: The curse of highly variable functions for local kernel machines. In: Advances in Neural Information Processing Systems 18, pp. 107–114. MIT Press (2006)

    Google Scholar 

  18. Roychowdhury, V., Siu, K., Orlitsky, A.: Neural models and spectral methods. In: Roychowdhury, V., Siu, K., Orlitsky, A. (eds.) Theorertical Advances in Neural Computation and Learning, pp. 3–36. Kluwer Academic Press (1997)

    Google Scholar 

  19. Kůrková, V., Savický, P., Hlaváčková, K.: Representations and rates of approximation of real-valued Boolean functions by neural networks. Neural Networks 11, 651–659 (1998)

    Article  Google Scholar 

  20. Kůrková, V.: Representations of highly-varying functions by perceptron networks. In: Informačné Technológie - Aplikácie a Teória - ITAT 2013, Košice, UPJŠ (2013)

    Google Scholar 

  21. Kůrková, V.: Dimension-independent rates of approximation by neural networks. In: Warwick, K., Kárný, M. (eds.) Computer-Intensive Methods in Control and Signal Processing. The Curse of Dimensionality, pp. 261–270. Birkhäuser, Boston (1997)

    Chapter  Google Scholar 

  22. Barron, A.R.: Neural net approximation. In: Narendra, K. (ed.) Proc. 7th Yale Workshop on Adaptive and Learning Systems, pp. 69–72. Yale University Press (1992)

    Google Scholar 

  23. Barron, A.R.: Universal approximation bounds for superpositions of a sigmoidal function. IEEE Trans. on Information Theory 39, 930–945 (1993)

    Article  MATH  MathSciNet  Google Scholar 

  24. Kůrková, V., Sanguineti, M.: Comparison of worst-case errors in linear and neural network approximation. IEEE Transactions on Information Theory 48, 264–275 (2002)

    Article  MATH  Google Scholar 

  25. Kůrková, V.: Minimization of error functionals over perceptron networks. Neural Computation 20, 250–270 (2008)

    Google Scholar 

  26. Kůrková, V.: Complexity estimates based on integral transforms induced by computational units. Neural Networks 33, 160–167 (2012)

    Article  MATH  Google Scholar 

  27. Matoušek, J.: Lectures on Discrete Geometry. Springer, New York (2002)

    Book  MATH  Google Scholar 

  28. Ball, K.: An elementary introduction to modern convex geometry. In: Levy, S. (ed.) Falvors of Geometry, pp. 1–58. Cambridge University Press (1997)

    Google Scholar 

  29. Schläfli, L.: Theorie der vielfachen Kontinuität. Zürcher & Furrer, Zürich (1901)

    Book  Google Scholar 

  30. Schläfli, L.: Gesamelte Mathematische Abhandlungen, Band 1. Birkhäuser, Basel (1950)

    Book  Google Scholar 

  31. Knuth, D.E.: Big omicron and big omega and big theta. SIGACT News 8, 18–24 (1976)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this paper

Cite this paper

Kůrková, V. (2014). Representations of Highly-Varying Functions by One-Hidden-Layer Networks. In: Rutkowski, L., Korytkowski, M., Scherer, R., Tadeusiewicz, R., Zadeh, L.A., Zurada, J.M. (eds) Artificial Intelligence and Soft Computing. ICAISC 2014. Lecture Notes in Computer Science(), vol 8467. Springer, Cham. https://doi.org/10.1007/978-3-319-07173-2_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-07173-2_7

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-07172-5

  • Online ISBN: 978-3-319-07173-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics