Skip to main content

Likelihood-Based Approach for Uncertainty Quantification in Multi-Physics Systems

  • Chapter
  • First Online:
Numerical Methods for Reliability and Safety Assessment

Abstract

This chapter presents a computational methodology for uncertainty quantification in multi-physics systems that require iterative analysis between models corresponding to each discipline of physics. This methodology is based on computing the probability of satisfying the inter-disciplinary compatibility equations, conditioned on specific values of the coupling (or feedback) variables, and this information is used to estimate the probability distributions of the coupling variables. The estimation of the coupling variables is analogous to likelihood-based parameter estimation in statistics and thus leads to the likelihood approach for multi-disciplinary analysis (LAMDA). Using the distributions of the feedback variables, the coupling can be removed in any one direction without loss of generality, while still preserving the mathematical relationship between the coupling variables. The calculation of the probability distributions of the coupling variables is theoretically exact and does not require a fully coupled system analysis. The LAMDA methodology is first illustrated using a mathematical example and then applied to the analysis of a fire detection satellite.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 29.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 37.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Agarwal H, Renaud JE, Preston EL, Padmanabhan D (2004) Uncertainty quantification using evidence theory in multidisciplinary design optimization. Reliab Eng Syst Saf 85(1):281–294

    Article  Google Scholar 

  • Aldrich J (1997) R.A. Fisher and the making of maximum likelihood 1912–1922. Stat Sci 12(3):162–176

    Article  MathSciNet  MATH  Google Scholar 

  • Alexandrov NM (2000) Lewis RM algorithmic perspectives on problem formulations in mdo. In: Proceedings of the 8th AIAA/USAF/NASA/ISSMO symposium on MA & O, Long Beach. AIAA, Reston

    Google Scholar 

  • Belytschko T (1980) Fluid-structure interaction. Comput Struct 12(4):459–469

    Article  MathSciNet  MATH  Google Scholar 

  • Braun RD (1996) Collaborative optimization: an architecture for large-scale distributed design. Ph.D. thesis, Stanford University

    Google Scholar 

  • Braun RD, Moore AA, Kroo IM (1997) Collaborative approach to launch vehicle design. J Spacecr Rockets 34(4):478–486

    Article  Google Scholar 

  • Chiralaksanakul A, Mahadevan S (2007) Decoupled approach to multidisciplinary design optimization under uncertainty. Optim Eng 8(1):21–42

    Article  MathSciNet  MATH  Google Scholar 

  • Cramer EJ, Dennis JE Jr, Frank PD, Lewis RM, Shubin GR (1994) Problem formulation for multidisciplinary optimization. SIAM J Optim 4:754–776

    Article  MathSciNet  MATH  Google Scholar 

  • Culler AJ, Crowell AR, McNamara JJ (2009) Studies on fluid-structural coupling for aerothermoelasticity in hypersonic flow. AIAA J 48:1721–1738

    Article  Google Scholar 

  • Du X, Chen W (2005) Collaborative reliability analysis under the framework of multidisciplinary systems design. Optim Eng 6(1):63–84

    Article  MathSciNet  MATH  Google Scholar 

  • Du X, Guo J, Beeram H (2008) Sequential optimization and reliability assessment for multidisciplinary systems design. Struct Multidiscip Optim 35(2):117–130

    Article  MathSciNet  MATH  Google Scholar 

  • Edwards AWF (1984) Likelihood. Cambridge University Press, Cambridge

    MATH  Google Scholar 

  • Felippa CA, Park KC, Farhat C (2001) Partitioned analysis of coupled mechanical systems. Comput Methods Appl Mech Eng 190(24–25):3247–3270

    Article  MATH  Google Scholar 

  • Ferson S, Tucker W, Paredis C, Bulgak Y, Kreinovich V (2009) Accounting for epistemic and aleatory uncertainty in early system design. Technical report, NASA SBIR

    Google Scholar 

  • Fisher RA (1912) On an absolute criterion for fitting frequency curves. Messenger Math 41(1):155–160

    Google Scholar 

  • Gu X, Renaud JE, Batill SM, Brach RM, Budhiraja AS (2000) Worst case propagated uncertainty of multidisciplinary systems in robust design optimization. Struct Multidiscip Optim 20(3):190–213

    Article  Google Scholar 

  • Hajela P, Bloebaum CL, Sobieszczanski-Sobieski J (1990) Application of global sensitivity equations in multidisciplinary aircraft synthesis. J Aircr (USA) 27:1002–1010

    Article  Google Scholar 

  • Haldar A, Mahadevan S (2000) Probability, reliability, and statistical methods in engineering design. Wiley, New York

    Google Scholar 

  • Kokkolaras M, Mourelatos ZP Papalambros PY (2006) Design optimization of hierarchically decomposed multilevel systems under uncertainty. J Mech Des 128:503

    Article  Google Scholar 

  • Li M, Azarm S (2008) Multiobjective collaborative robust optimization with interval uncertainty and interdisciplinary uncertainty propagation. J Mech Des 130:081402

    Article  Google Scholar 

  • Liu H, Chen W, Kokkolaras M, Papalambros PY, Kim HM (2006) Probabilistic analytical target cascading: a moment matching formulation for multilevel optimization under uncertainty. J Mech Des 128:991

    Article  Google Scholar 

  • Mahadevan S, Smith N (2006) Efficient first-order reliability analysis of multidisciplinary systems. Int J Reliab Saf 1(1):137–154

    Article  Google Scholar 

  • McKeeman WM (1962) Algorithm 145: adaptive numerical integration by simpson’s rule. Commun ACM 5(12):604

    Article  Google Scholar 

  • Michler C, Hulshoff SJ, Van Brummelen EH, De Borst R (2004) A monolithic approach to fluid–structure interaction. Comput Fluids 33(5):839–848

    Article  MATH  Google Scholar 

  • Park KC, Felippa CA, DeRuntz JA (1977) Stabilization of staggered solution procedures for fluid-structure interaction analysis. Comput Methods Fluid Struct Interact Problem 26:95–124

    Google Scholar 

  • Pawitan Y (2001) In all likelihood: statistical modelling and inference using likelihood. Oxford University Press, Oxford

    Google Scholar 

  • Rackwitz R, Flessler B (1978) Structural reliability under combined random load sequences. Comput Struct 9(5):489–494

    Article  MATH  Google Scholar 

  • Sankararaman S (2012) Uncertainty quantification and integration in engineering systems. Ph.D. thesis, Vanderbilt University

    Google Scholar 

  • Sankararaman S, Mahadevan S (2012) Likelihood-based approach to multidisciplinary analysis under uncertainty. J Mech Des 134:031008

    Article  Google Scholar 

  • Singpurwalla ND (2006) Reliability and risk: a Bayesian perspective, vol 637. Wiley, Hoboken

    Book  Google Scholar 

  • Singpurwalla ND (2007) Betting on residual life: the caveats of conditioning. Stat Probab Lett 77(12):1354–1361

    Article  MathSciNet  MATH  Google Scholar 

  • Smith N (2007) Probabilistic design of multidisciplinary systems. Ph.D. thesis, Vanderbilt University, Nashville

    Google Scholar 

  • Sobieszczanski-Sobieski J (1988) Optimization by decomposition: a step from hierarchic to non-hierarchic systems. Recent Adv Multidiscip Anal Optim 1:51–78

    Google Scholar 

  • Sobieszczanski-Sobieski J, Altus TD, Phillips M, Sandusky R (2003) Bilevel integrated system synthesis for concurrent and distributed processing. AIAA J 41(10):1996–2003

    Article  Google Scholar 

  • Thornton EA (1996) Thermal structures for aerospace applications. AIAA, Reston

    Book  Google Scholar 

  • Wertz JR, Larson WJ (1999) Space mission analysis and design. Microcosm Inc., Torrance

    Google Scholar 

  • Wujek BA, Renaud JE, Batill SM (1997) A concurrent engineering approach for multidisciplinary design in a distributed computing environment. In: Multidisciplinary design optimization: state-of-the-art. Proceedings in applied mathematics, vol 80, pp 189–208

    Google Scholar 

  • Zaman KB (2010) Modeling and management of epistemic uncertainty for multidisciplinary system analysis and design. Ph.D. thesis, Vanderbilt University, Nashville

    Google Scholar 

  • Zhang X, Huang HZ (2010) Sequential optimization and reliability assessment for multidisciplinary design optimization under aleatory and epistemic uncertainties. Struct Multidiscip Optim 40(1):165–175

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shankar Sankararaman .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Sankararaman, S., Mahadevan, S. (2015). Likelihood-Based Approach for Uncertainty Quantification in Multi-Physics Systems. In: Kadry, S., El Hami, A. (eds) Numerical Methods for Reliability and Safety Assessment. Springer, Cham. https://doi.org/10.1007/978-3-319-07167-1_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-07167-1_2

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-07166-4

  • Online ISBN: 978-3-319-07167-1

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics