Skip to main content

Dynamical Patterns in Seismology

  • Chapter
  • First Online:

Part of the book series: Understanding Complex Systems ((UCS))

Abstract

Earthquakes are important components of complex dynamical Earth systems known as geocomplexity. One of the main contributors to geocomplexity is the seismic process which notoriously displays nonlinear behaviors including the self-organization of many interacting components (tectonic plates, faults). These processes result in seismic (macro-scale) events of collective behaviors in the temporal, spatial and energy domains. In the chapter the results of both active and passive experiments on triggering/synchronization are presented. The dynamic patterns of seismicity are revealed by the application of nonlinear dynamics tools to time series from: “laboratory” earthquakes (acoustic emission during natural stick-slip and stick-slip under weak periodic forcing), regional seismicity of the Caucasus Mountains, local seismicity in the area of large reservoir during its construction and regular exploitation, as well as from analysis of variations in local seismicity in a Central Asia test area due to application of strong electric pulses. The review of recent results on dynamic triggering of local seismicity by remote earthquakes is also presented. It is shown that relatively weak external forcings can induce clear changes in modeled and real earthquake dynamics. Recurrence Quantification Analysis (RQA) proved to be an efficient method for finding hidden nonlinear structures is seismic time series. Quoting Webber and Zbilut (2005): “…whatever the case, whether it be forecasting dynamical events in the medical field, geophysics, or meteorology, the future of recurrence analysis looks bright and promising.”

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   129.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. D. Broomhead, G. King, On the qualitative analysis of experimental dynamical systems, in Nonlinear Phenomena and Chaos, ed. by S. Sarkar (Adam Hilger, Bristol, 1986), pp. 113–144

    Google Scholar 

  2. L. Telesca, T. Matcharasvili, T. Chelidze, N. Zhukova, Relationship between seismicity and water level in the Enguri high dam area (Georgia) using the singular spectrum analysis. Nat. Hazards Earth Syst. Sci. 12, 2479–2485 (2012)

    Article  ADS  Google Scholar 

  3. C.H. Scholz, Mechanics of Earthquakes and Faulting (Cambridge University Press, Cambridge, 2003)

    Google Scholar 

  4. G. King, Fault interaction, earthquake stress changes and the evolution of seismicity, in Earthquake Seismology, volume ed. by H. Kanamori (Elsevier, Amsterdam, 2009), pp. 225–255

    Google Scholar 

  5. H.K. Gupta, Reservoir-Induced Earthquakes (Elsevier, New York, 1992). 264 pp

    Google Scholar 

  6. J.-R. Grasso, D. Sornette, Testing self-organized criticality by induced seismicity. J. Geophys. Res. 103, 29965–29987 (1998)

    Article  ADS  Google Scholar 

  7. A.V. Nikolaev (ed.), Induced Seismicity (“Nauka”, Moscow, 1994) 220 p (in Russian)

    Google Scholar 

  8. K. Heki, Snow load and seasonal variation of earthquake occurrence in Japan. Earth Planet. Sci. Lett. 207, 159–164 (2003)

    Article  ADS  Google Scholar 

  9. N.T. Tarasov, Crustal seismicity variation under electric action. Trans. (Doklady) Russ. Acad. Sci. 353A(3), 445–448 (1997)

    MathSciNet  Google Scholar 

  10. N. Tarasov, H. Tarasova, A. Avagimov, V. Zeigarnik, The effect of high-power electromagnetic pulses on the seismicity of Central Asia and Kazakhstan. Volcanol. Seismol. (Moscow) N4–5, 152–160 (1999) (in Russian)

    Google Scholar 

  11. C.H. Scholz, Earthquakes: good tidings. Nature 425, 670–671 (2003). doi:10.1038/425670a

    Article  ADS  Google Scholar 

  12. T. Iwata, Earthquake triggering caused by the external oscillation of stress/strain changes. Community Online Resource for Statistical Seismicity Analysis (2012). doi:10.5078/corssa-65828518. http://www.corssa.org

  13. D. Hill, S. Prejean, Dynamic triggering, in Earthquake Seismology, volume ed. by H. Kanamori (Elsevier, Amsterdam, 2009), pp. 257–293

    Google Scholar 

  14. K. Chao, Z. Peng, W. Ch, C.-C. Tang, C.-H. Lin, Remote triggering of non-volcanic tremor around Taiwan. Geophys. J. Int. 188, 301–324 (2012)

    Article  ADS  Google Scholar 

  15. K. Chao, Z. Peng, A. Fabian, L. Ojha, Comparisons of triggered tremor in California. Bull. Seismol. Soc. Am. 102, 900–908 (2012)

    Article  Google Scholar 

  16. R. Meyers (ed.), Encyclopedia of Complexity and Systems Science (Springer, New York, 2009)

    Google Scholar 

  17. H. Abarbanel, L.S. Tsimring, The analysis of observed chaotic data in physical systems. Rev. Mod. Phys. 65, 1331–1392 (1993)

    Article  ADS  MathSciNet  Google Scholar 

  18. H. Kantz, T. Schreiber, Nonlinear Time Series Analysis (Cambridge University Press, Cambridge, 1997)

    MATH  Google Scholar 

  19. J. Rundle, D. Turcotte, W. Klein (eds.), Geocomplexity and Physics of Earthquakes (AGU, Washington, DC, 2009)

    Google Scholar 

  20. D. Sornette, Critical Phenomena in Natural Sciences (Springer, Heidelberg, 2000)

    Book  MATH  Google Scholar 

  21. J. Sprott, Chaos and Time-Series Analysis (Oxford University Press, Oxford, 2003)

    MATH  Google Scholar 

  22. S. Strogatz, Nonlinear Dynamics and Chaos (Perseus Books Group, Westview, 2000)

    Google Scholar 

  23. A. Pikovsky, M.G. Rosenblum, J. Kurths, Synchronization: Universal Concept in Nonlinear Science (Cambridge University Press, Cambridge, 2003)

    Google Scholar 

  24. T. Chelidze, O. Lursmanashvili, T. Matcharashvili, M. Devidze, Triggering and synchronization of stick slip: waiting times and frequency–energy distribution. Tectonophysics 424, 139–155 (2006)

    Article  ADS  Google Scholar 

  25. D. Sornette, Why Stock Markets Crash (Princeton University Press, Princeton, 2003)

    MATH  Google Scholar 

  26. A. Bunde, J. Kropp, H. Schellnhuber (eds.), The Science of Disasters (Springer, Berlin, 2002)

    Google Scholar 

  27. H. Kanamori, E.E. Brodsky, The physics of earthquakes. Rep. Prog. Phys. 67, 1429–1496 (2004)

    Article  ADS  MathSciNet  Google Scholar 

  28. P. Bak, C. Tang, K. Wiesenfeld, Self-organized criticality. Phys. Rev. A38, 364–374 (1988)

    Article  ADS  MathSciNet  Google Scholar 

  29. Y. Ogata, Statistical models for earthquake occurrences and residual analysis for point processes. J. Am. Stat. Assoc. 83, 9–27 (1988)

    Article  Google Scholar 

  30. D. Sornette, M. Werner, Statistical physics approaches to seismicity, in Encyclopedia of Complexity and Systems Science (Springer, New York, 2009), pp. 7872–7891

    Google Scholar 

  31. C. Goltz, Fractal and Chaotic Properties of Earthquakes (Springer, Berlin, 1997)

    Book  Google Scholar 

  32. T. Matcharashvili, T. Chelidze, Z. Javakhishvili, Nonlinear analysis of magnitude and interevent time interval sequences for earthquakes of the Caucasian region. Nonlinear Processes Geophys. 7, 9–19 (2000)

    Article  ADS  Google Scholar 

  33. T. Chelidze, T. Matcharashvili, Complexity of seismic process, measuring and applications – a review. Tectonophysics 431, 49–61 (2007)

    Article  ADS  Google Scholar 

  34. G. Sobolev, Seismicity dynamics and earthquake predictability. Nat. Hazards Earth Syst. Sci. 11, 445–458 (2011). doi:10.5194/nhess-11-445-2011

    Article  ADS  Google Scholar 

  35. T. Rikitake, Earthquake Forecasting and Warning (Center for Academic Publications, Tokyo, 1982)

    Google Scholar 

  36. K. Mogi, Earthquake Prediction (AP, Tokyo, 1985)

    Google Scholar 

  37. G.A. Sobolev, A.V. Ponomarev, Physics of Earthquakes and Precursors (“Nauka”, Moscow, 2003) (in Russian)

    Google Scholar 

  38. R.J. Geller, Earthquake prediction: a critical review. Geophys. J. Int. 131, 425–450 (1997)

    Article  ADS  Google Scholar 

  39. M. Wyss, D. Booth, The IASPEI procedure for the evaluation of earthquake precursors. Geophys. J. Int. 131, 42–424 (1997)

    Google Scholar 

  40. Y. Ogata, K. Katsura, G. Falcone, K. Nanjo, J. Zhuang, Comprehensive and topical evaluations of earthquake forecasts in terms of number, time, space, and magnitude. Bull. Seismol. Soc. Am. 103, 1692–1708 (2013). doi:10.1785/0120120063

    Article  Google Scholar 

  41. A. Lyubushin, Prognostic properties of low-frequency seismic noise. Nat. Sci. 4, 659–666 (2012). doi:10.4236/ns.2012.428087

    Google Scholar 

  42. D.M. Evans, Denver area earthquakes and the rocky mountain arsenal disposal well. Mt. Geol. 3, 23–26 (1966)

    Google Scholar 

  43. S. Hainzl, T. Kraft, J. Wassermann, H. Igel, E. Schmedes, Evidence for rainfall-triggered earthquake activity. Geophys. Res. Lett. 33, L19303 (2006). doi:10.1029/2006GL027642

    Article  ADS  Google Scholar 

  44. T. Chelidze, T. Matcharashvili, Electromagnetic control of earthquake dynamics? Comput. Geosci. 29, 587–593 (2003)

    Article  ADS  Google Scholar 

  45. S. Prejean, D. Hill, Dynamic triggering of earthquakes, in Encyclopedia of Complexity and Systems Science, ed. by R.A. Meyers (Springer, New York, 2009), pp. 2600–2621

    Chapter  Google Scholar 

  46. S. Boccaletti, C. Grebogi, Y.-C. Lai, H. Mancini, D. Maza, The control of chaos: theory and applications. Phys. Rep. 329, 103–119 (2000)

    Article  ADS  MathSciNet  Google Scholar 

  47. A. Koronovskii, O. Moskalenko, A. Hramov, Mechanisms behind the generalized synchronization conditions. Tech. Phys. 51(2), 143–150 (2006)

    Article  Google Scholar 

  48. E. Ott, M. Spano, Controlling chaos. Phys. Today 5, 34–40 (1995)

    Article  Google Scholar 

  49. W.L. Ditto, S.N. Rauseo, M.L. Spano, Experimental control of chaos. Phys. Rev. Lett. 65, 3211–3214 (1990)

    Article  ADS  Google Scholar 

  50. J. Starrett, Control of chaos by occasional bang–bang. Phys. Rev. E 67, 036203, 1–4 (2003)

    Google Scholar 

  51. I.I. Blekhman, Synchronization in Science and Technology (ASME Press, New York, 1988)

    Google Scholar 

  52. M. Palus, Detecting phase synchronization in noisy systems. Phys. Lett. A 227, 301–308 (1997)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  53. M. Rosenblum et~al., Phase synchronization: from theory to data analysis, in Handbook of Biological Physics, ed. by F. Moss, S. Gielen. Neuro-Informatics, vol 4 (Elsevier, Amsterdam, 2001), pp. 279–321

    Google Scholar 

  54. E. Toledo, M. Rosenblum, J. Kurths, S. Akselrod, Cardiorespiratory synchronization: is it real phenomenon? in Computers in Cardiology, ed. by A. Murrey, S. Swiryn (IEEE, Hannover, 1999), pp. 237–240

    Google Scholar 

  55. V. Anishchenko, Dynamical Chaos. Models and Experiments (World Scientific, Singapore, 1995)

    MATH  Google Scholar 

  56. C. Tsallis, Possible generalization of Boltzmann–Gibbs statistics. J. Stat. Phys. 52, 479–487 (1988)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  57. A. Lempel, J. Ziv, On the complexity of finite sequences. IEEE Trans. Inf. Theory IT-22, 75–81 (1976)

    Article  MathSciNet  Google Scholar 

  58. A. Schuster, On lunar and solar periodicities of earthquakes. Proc. R. Soc. Lond. 61, 455–465 (1897)

    Article  MATH  Google Scholar 

  59. F. Takens, Detecting strange attractors in turbulence, in Dynamical Systems and Turbulence, ed. by D.A. Rand, L.S. Young. Springer Lecture Notes in Mathematics, vol. 898 (Springer, Berliner, 1981), pp. 366–381

    Google Scholar 

  60. J.-P. Eckmann, S. Kamphorst, D. Ruelle, Recurrence plots of dynamical systems. Europhys. Lett. 4, 973–977 (1987)

    Article  ADS  Google Scholar 

  61. J.P. Zbilut, C.L. Webber Jr., Embeddings and delays as derived from quantification of recurrence plots. Phys. Lett. A 171, 199–203 (1992)

    Article  ADS  Google Scholar 

  62. J.P. Zbilut, C. Webber Jr., Detecting deterministic signals in exceptionally noisy environments using cross-recurrence quantization. Phys. Lett. A 246, 122–128 (1998)

    Article  ADS  Google Scholar 

  63. C.L. Webber Jr., J.P. Zbilut, Recurrence quantification analysis of nonlinear dynamical systems, in Tutorials in Contemporary Nonlinear Methods for the Behavioral Sciences, ed. by M.A. Riley, G.C. Van Orden (National Science Foundation, Arlington, VA, 2005), pp. 26–94

    Google Scholar 

  64. M. Marwan, Encounters with neighborhood, Ph.D. Thesis. Potsdam, 2003

    Google Scholar 

  65. N. Marwan, M. Thiel, N. Nowaczzyk, Cross recurrence plot based synchronization of time series. Nonlinear Processes Geophys. 9, 325–331 (2002)

    Article  ADS  Google Scholar 

  66. N. Marwan, M.C. Romano, M. Thiel, J. Kurths, Recurrence plots for the analysis of complex systems. Phys. Rep. 438, 237–329 (2007)

    Article  ADS  MathSciNet  Google Scholar 

  67. C.L. Webber Jr., N. Marwan, A. Facchini, A. Giuliani, Simpler methods do it better: success of recurrence quantification analysis as a general purpose data analysis tool. Phys. Lett. A 373, 3753–3756 (2009)

    Article  ADS  MATH  Google Scholar 

  68. T. Matcharashvili, T. Chelidze, Nonlinear dynamics as a tool for revealing synchronization and ordering in geophysical time series: application to Caucasus seismicity, in Synchronization and Triggering: From Fracture to Earthquake Processes, ed. by V. de Rubeis, Z. Czechowski, R. Teisseyre (Springer, Berlin, 2010), pp. 3–21

    Google Scholar 

  69. M. Thiel, M.C. Romano, J. Kurths, R. Meucci, E. Allaria, F.T. Arecchi, Influence of observational noise on the recurrence quantification analysis. Physica D 171, 138–152 (2002)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  70. N. Marwan, How to avoid potential pitfalls in recurrence plot based data analysis. Int. J. Bifurcation Chaos 21, 1003–1017 (2011)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  71. J.P. Zbilut, J.M. Zaldivar-Comenges, F. Strozzi, Recurrence quantification based Lyapunov exponents for monitoring divergence in experimental data. Phys. Lett. A 297, 173–181 (2002)

    Article  ADS  MATH  Google Scholar 

  72. C.L. Webber Jr., J.P. Zbilut, Dynamical assessment of physiological systems and states using recurrence plot strategies. J. Appl. Physiol. 76, 965–973 (1994)

    Google Scholar 

  73. D. Hill, Surface wave potential for triggering tectonic (nonvolcanic) tremor. Bull. Seismol. Soc. Am. 100, 1859–1878 (2010). doi:10.1785/0120090362

    Article  Google Scholar 

  74. N.M. Beeler, D.A. Lockner, Why earthquakes correlate weakly with the solid Earth tides: effects of periodic stress on the rate and probability of earthquake occurrence. J. Geophys. Res. B108, 2391–2405 (2003)

    Article  ADS  Google Scholar 

  75. N. Bartlow, D. Lockner, N. Beeler, Laboratory triggering of stick-slip events by oscillatory loading in the presence of pore fluid with implications for physics of tectonic tremor. J. Geophys. Res. 117, B11411 (2012). doi:10.1029/2012JB009452

    Article  ADS  Google Scholar 

  76. T. Chelidze, T. Matcharashvili, J. Gogiashvili, O. Lursmanashvili, M. Devidze, Phase synchronization of slip in laboratory slider system. Nonlinear Processes Geophys. 12 (2005)

    Google Scholar 

  77. T. Chelidze, O. Lursmanashvili, T. Matcharashvili, N. Varamashvili, N. Zhukova, E. Mepharidze, Triggering and synchronization of stick-slip: experiments on spring-slider system, in Synchronization and Triggering: From Fracture to Earthquake Processes, ed. by V. de Rubeis, Z. Czechowski, R. Teisseyre (Springer, Berlin, 2010), pp. 123–164

    Google Scholar 

  78. T. Chelidze, T. Matcharashvili, Triggering and synchronization of seismicity: laboratory and field data – a review, in Earthquakes – Triggers, Environmental Impact and Potential Hazards, ed. by K. Konstantinou (Nova Science Pub, New York, 2013), pp. 165–231

    Google Scholar 

  79. W.E. Brace, I.D. Byerlee, Stick slip as a mechanism for earthquakes. Science 153, 990–992 (1966)

    Article  ADS  Google Scholar 

  80. J.H. Dieterich, Modeling of rock friction 1. Experimental results and constitutive equations. J. Geophys. Res. 84B, 2161–2168 (1979)

    Article  ADS  Google Scholar 

  81. A. Ruina, Slip instability and state variable friction laws. J. Geophys. Res. 88B, 10359–10370 (1983)

    Article  ADS  Google Scholar 

  82. T. Chelidze, T. Matcharashvili, O. Lursmanashvili, N. Varamashvili, Acoustics of stick-slip deformation under external forcing: the model of seismic process synchronization, in 2nd IASME/WSEAS International Conference on GEOLOGY and SEISMOLOGY (GES ‘08) (Cambridge, 2008)

    Google Scholar 

  83. T. Chelidze, N. Varamashvili, M. Devidze, Z. Chelidze, V. Chikhladze, T. Matcharashvili, Laboratory study of electromagnetic initiation of slip. Ann. Geophys. 45, 587–599 (2002)

    Google Scholar 

  84. T. Chelidze, O. Lursmanashvili, Electromagnetic and mechanical control of slip: laboratory experiments with slider system. Nonlinear Processes Geophys. 20, 1–8 (2003)

    Google Scholar 

  85. I. Tamm, Fundamentals of Theory of Electricity. 6th Edition (1956) Moscow, State Publishing House of Technical-Theoretical Literature (in Russian)

    Google Scholar 

  86. R. Sibson, Crustal stress, faulting and fluid flow, in Deformation and Fluid Flow Geological Society, London, Special Publications, vol 78 (1994), pp. 69–84

    Google Scholar 

  87. M.G. Rosenblum, A. Pikovsky, J. Kurths, Phase synchronization of chaotic oscillators. Phys. Rev. Lett. 76, 1804–1808 (1996)

    Article  ADS  Google Scholar 

  88. E. Kononov, Visual Recurrence Analysis (2006), www2.netcom.com/~eugenek/page6.html

  89. T. Chelidze, O. Lursmanashvili, T. Matcharashvili, N. Varamashvili, N. Zhukova, E. Mepharidze, High order synchronization of stick-slip process: experiments on spring-slider system. Nonlinear Dyn. (2009). doi:10.1007/s11071-009-9536-6

  90. N. Varamashvili, T. Chelidze, O. Lursmanashvili, Phase synchronization of slips by periodical (tangential and normal) mechanical forcing in the spring-slider model. Acta Geophys. 56, 357–371 (2008)

    Article  ADS  Google Scholar 

  91. O. Ben-David, S. Rubinstein, J. Fineberg, Stick-slip and the evolution of frictional strength. Nature 463, 76–79 (2010). doi:10.1038/nature08676

    Article  ADS  Google Scholar 

  92. P. Reasenberg, Second-order moment of central California seismicity, 1969–1982. J. Geophys. Res. 90, 5479–5495 (1985)

    Article  ADS  Google Scholar 

  93. M. Matthews, P. Reasenberg, Statistical methods for investigating quiescence and other temporal seismicity patterns. Pure Appl. Geophys. 126, 357–372 (1988)

    Article  ADS  Google Scholar 

  94. W.H. Press, S.A. Teukolsky, W.T. Vetterling, B.P. Flannery, Numerical Recipes. The Art of Scientific Computing (Cambridge University Press, New York, 1997)

    Google Scholar 

  95. R.N. Vakarchuk, R.E. Tatevossian, Zh. Ya. Aptekman, V.V. Bykova, The 1991 Racha earthquake, Caucasus. Izvestiya, Phys. Solid Earth 49, 653–659 (2013)

    Google Scholar 

  96. G. Sobolev et al., The optical disk “Spitak earthquake of 1988”. Earthquake Hazard Risk 6, 231–238 (1996)

    Article  Google Scholar 

  97. D. Stich, J. Almendros, V. Jiménez, F. Mancilla, E. Carmona, Ocean noise triggering of rhythmic long period events at Deception Island volcano. Geophys. Res. Lett. 38, L22307 (2011). doi:10.1029/2011GL049671

    ADS  Google Scholar 

  98. K. Obara, Nonvolcanic deep tremors associated with subduction in Southwest Japan. Science 296, 1679–1681 (2002)

    Article  ADS  Google Scholar 

  99. Z. Peng, J.E. Vidale, A.G. Wech, R.M. Nadeau, K.C. Creager, Remote triggering of tremor along the San Andreas fault in central California. J. Geophys. Res. 114, B00A06 (2009). doi:10.1029/2008JB006049

    ADS  Google Scholar 

  100. C.-J. Wang, M. Manga, Earthquakes and water, in Lecture Notes in Earth Sciences (Springer, 2010)

    Google Scholar 

  101. J. Costain, J. Bollinger, Review: research results in hydroseismicity from 1987 to 2009. Bull. Seismol. Soc. Am. 100, 1841–1858 (2010). doi:10.1785/0120090288

    Article  Google Scholar 

  102. D. Simpson, Triggered earthquakes. Ann. Rev. Earth Planetary Sci. 14, 21–42 (1986)

    Article  ADS  Google Scholar 

  103. P. Talwani, On nature of reservoir-induced seismicity. Pure Appl. Geophys. 150, 473–492 (1997)

    Article  ADS  Google Scholar 

  104. Reservoirs and Seismicity: State of knowledge. Bulletin of International Commission on Large Dams, #137, (Paris, 2011)

    Google Scholar 

  105. J. Peinke, T. Matcharashvili, T. Chelidze, J. Gogiashvili, A. Nawroth, O. Lursmanashvili, Z. Javakhishvili, Influence of periodic variations in water level on regional seismic activity around a large reservoir: field data and laboratory model. Phys. Earth Plan. Interiors 156, 130–142 (2006)

    Article  ADS  Google Scholar 

  106. T. Chelidze, V. de Rubeis, T. Matcharashvili, P. Tosi, Dynamical changes induced by strong electromagnetic discharges in earthquakes’ waiting time distribution at the Bishkek Test Area (Central Asia), in Synchronization and Triggering: From Fracture to Earthquake Processes, ed. by V. de Rubeis, Z. Czechowski, R. Teisseyre (Springer, Berlin, 2010), pp. 339–360

    Google Scholar 

  107. T. Matcharashvili, T. Chelidze, V. Abashidze, N. Zhukova, E. Meparidze, Changes in dynamics of seismic processes around Enguri high dam reservoir induced by periodic variation of water level, in Synchronization and Triggering: From Fracture to Earthquake Processes, ed. by V. de Rubeis, Z. Czechowski, R. Teisseyre (Springer, Berlin, 2010), pp. 273–286

    Google Scholar 

  108. T. Matcharashvili, T. Chelidze, V. Abashidze, N. Zhukova, E. Mepharidze, Evidence for changes in the dynamics of Earth crust tilts caused by the large dam construction and reservoir filling at the Enguri dam international test area (Georgia). Nonlinear Dyn. (2011). doi:10.1007/s11071-010-9930-0

    Google Scholar 

  109. N. Jones, The quake machine. New Scientists. June 30 (2001), 2297, pp. 34–37

    Google Scholar 

  110. T. Chelidze, V. De Rubeis, T. Matcharashvili, P. Tosi, Influence of electro magnetic strong discharges on the dynamics of earthquakes time distribution at the Bishkek test area. Ann. Geophys. 49, 989–1000 (2006)

    Google Scholar 

  111. V. Keilis-Boirok, A. Gabrielov, A. Soloviev, Geocomplexity and earthquake prediction, in Encyclopedia of Complexity and System Science, ed. by R. Meyers (Springer, New York, 2009), pp. 4178–4194

    Chapter  Google Scholar 

Download references

Acknowledgments

The authors express their gratitude to the Georgian (Rustaveli) National Science Foundation, INTAS foundation and Open Partial Agreement on Major Disasters at Council of Europe (EUR-OPA) for financial support. Authors are grateful for the kind permission of World Scientific and Engineering Academy and Society (WSEAS), Bulletin of Seismological Society of America, Journal of Georgian Geophysical Society and Bulletin of Georgian National Academy of Sciences to reuse Figures from published in these editions papers in the present review. The help of Prof. O. Lursmanashvili, Dr. N. Varamashvili and researchers N. Zhukova, E. Mepharidze and D. Tephnadze is acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tamaz Chelidze .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Chelidze, T., Matcharashvili, T. (2015). Dynamical Patterns in Seismology. In: Webber, Jr., C., Marwan, N. (eds) Recurrence Quantification Analysis. Understanding Complex Systems. Springer, Cham. https://doi.org/10.1007/978-3-319-07155-8_10

Download citation

Publish with us

Policies and ethics