Skip to main content

Using a Topological Descriptor to Investigate Structures of Virus Particles

  • Conference paper
  • 935 Accesses

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 8466))

Abstract

An understanding of the three-dimensional structure of a biological macromolecular complex is essential to fully understand its function. A component tree is a topological and geometric image descriptor that captures information regarding the structure of an image based on the connected components determined by different grayness thresholds. We believe interactive visual exploration of component trees of (the density maps of) macromolecular complexes can yield much information about their structure. To illustrate how component trees can convey important structural information, we consider component trees of four recombinant procapsids of a bacteriophage (cystovirus ϕ6), and show how differences between the component trees reflect the fact that each non-wild-type mutant of the procapsid has an incomplete set of constituent proteins.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Caldairou, B., Naegel, B., Passat, N.: Segmentation of Complex Images Based on Component-Trees: Methodological Tools. In: Wilkinson, M.H.F., Roerdink, J.B.T.M. (eds.) ISMM 2009. LNCS, vol. 5720, pp. 171–180. Springer, Heidelberg (2009)

    Chapter  Google Scholar 

  2. Carr, H., Snoeyink, J., Axen, U.: Computing Contour Trees in All Dimensions. Comput. Geom. 24, 75–94 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  3. Dokládal, P., Bloch, I., Couprie, M., Ruijters, D., Urtasun, R., Garnero, L.: Topologically Controlled Segmentation of 3D Magnetic Resonance Images of the Head by Using Morphological Operators. Pattern Recogn. 36, 2463–2478 (2003)

    Article  Google Scholar 

  4. Edelsbrunner, H., Harer, J.: Computational Topology: An Introduction. Am. Math. Soc., Providence (2010)

    Google Scholar 

  5. EMDataBank, http://emdatabank.org

  6. Frank, J.: Three-Dimensional Electron Microscopy of Macromolecular Assemblies: Visualization of Biological Molecules in Their Native State. Oxford University Press, New York (2006)

    Book  Google Scholar 

  7. Herman, G.T.: Geometry of Digital Spaces. Birkhäuser, Boston (1998)

    MATH  Google Scholar 

  8. Herman, G.T., Kong, T.Y., Oliveira, L.M.: Provably Robust Simplification of Component trees of Multidimensional Images. In: Brimkov, V.E., Barneva, R.P. (eds.) Digital Geometry Algorithms: Theoretical Foundations and Applications to Computational Imaging, pp. 27–69. Springer, Dordrecht (2012)

    Chapter  Google Scholar 

  9. Herman, G.T., Kong, T.Y., Oliveira, L.M.: Tree Representation of Digital Picture Embeddings. J. Vis. Commun. Image. Represent. 23, 883–891 (2012)

    Article  Google Scholar 

  10. Jones, R.: Connected Filtering and Segmentation Using Component Trees. Comput. Vis. Image Und. 75, 215–228 (1999)

    Article  Google Scholar 

  11. Katz, G., Wei, H., Alimova, A., Katz, A., Morgan, D.G., Gottlieb, P.: Protein P7 of the Cystovirus φ6 is Located at the Three-Fold Axis of the Unexpanded Procapsid. PLoS ONE 7, e47489 (2012), doi:10.1371/journal.pone

    Google Scholar 

  12. Lawson, C.L., et al.: EMDataBank.org: Unified Data Resource for CryoEM. Nucl. Acids Res. 39, D456–D464 (2011)

    Google Scholar 

  13. Naegel, B., Passat, N., Boch, N., Kocher, M.: Segmentation Using Vector-Attribute Filters: Methodology and Application to Dermatological Imaging. In: Banon, G.J.F., Barrera, J., Braga-Neto, U. de, M., Hirata, N.S.T. (eds.) ISMM 2007: 8th International Symposium on Mathematical Morphology, vol. 1, pp. 239–250. INPE, São José dos Campos (2007)

    Google Scholar 

  14. Naegel, B., Wendling, L.: Combining Shape Descriptors and Component-Tree for Recognition of Ancient Graphical Drop Caps. In: Ranchordas, A., Araújo, H. (eds.) VISAPP 2009: 4th International Conference on Computer Vision Theory and Applications, vol. 2, pp. 297–302. INSTICC Press, Setúbal (2009)

    Google Scholar 

  15. Najman, L., Couprie, M.: Building the Component Tree in Quasi-Linear Time. IEEE Trans. Image Process. 15, 3531–3539 (2006)

    Article  Google Scholar 

  16. Nemecek, D., Heymann, J.B., Qiao, J., Mindich, L., Steven, A.C.: Cryo-Electron Tomography of Bacteriophage φ6 Procapsids Shows Random Occupancy of the Binding Sites for RNA Polymerase and Packaging NTPase. J. Struct. Biol. 171, 389–396 (2010)

    Article  Google Scholar 

  17. Nemecek, D., Qiao, J., Mindich, L., Steven, A.C., Heymann, J.B.: Packaging Accessory Protein P7 and Polymerase P2 Have Mutually Occluding Binding Sites inside the Bacteriophage φ6 Procapsid. J. Virol. 86, 11616–11624 (2012)

    Article  Google Scholar 

  18. Oliveira, L.M., Kong, T.Y., Herman, G.T.: Using Component Trees to Explore Biological Structures. In: Herman, G.T., Frank, J. (eds.) Computational Methods for Three-Dimensional Microscopy Reconstruction, pp. 221–256. Birkhäuser, Boston (2014)

    Chapter  Google Scholar 

  19. Ouzounis, G.K., Wilkinson, M.H.F.: Mask-Based Second-Generation Connectivity and Attribute Filters. IEEE Trans. Pattern Anal. Mach. Intell. 29, 990–1004 (2007)

    Article  Google Scholar 

  20. Passat, N., Naegel, B., Rousseau, F., Koob, M., Dietemann, J.L.: Interactive Segmentation Based on Component-Trees. Pattern Recogn. 44, 2539–2554 (2011)

    Article  MATH  Google Scholar 

  21. Salembier, P., Oliveras, A., Garrido, L.: Antiextensive Connected Operators for Image and Sequence Processing. IEEE Trans. Image Process. 7, 555–570 (1998)

    Article  Google Scholar 

  22. Sarioz, D., Kong, T.Y., Herman, G.T.: History Trees as Descriptors of Macromolecular Structures. In: Bebis, G., et al. (eds.) ISVC 2006. LNCS, vol. 4291, pp. 263–272. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  23. Tarjan, R.E.: Efficiency of a Good but Not Linear Set Union Algorithm. J. ACM 22, 215–225 (1975)

    Article  MATH  MathSciNet  Google Scholar 

  24. Wilkinson, M.H.F., Westenberg, M.A.: Shape Preserving Filament Enhancement Filtering. In: Niessen, W., Viergever, M. (eds.) MICCAI 2001. LNCS, vol. 2208, pp. 770–777. Springer, Heidelberg (2001)

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this paper

Cite this paper

Oliveira, L.M., Herman, G.T., Kong, T.Y., Gottlieb, P., Katz, A. (2014). Using a Topological Descriptor to Investigate Structures of Virus Particles. In: Barneva, R.P., Brimkov, V.E., Šlapal, J. (eds) Combinatorial Image Analysis. IWCIA 2014. Lecture Notes in Computer Science, vol 8466. Springer, Cham. https://doi.org/10.1007/978-3-319-07148-0_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-07148-0_7

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-07147-3

  • Online ISBN: 978-3-319-07148-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics