Skip to main content

Marine Sponge Derived Actinomycetes and Their Anticancer Compounds

  • Chapter
  • First Online:
Handbook of Anticancer Drugs from Marine Origin

Abstract

Chemotherapy is one of the main treatments used to combat cancer. A great number of anticancer agents are natural products or their derivatives, mainly produced by microorganisms and the actinomycetes are prolific producers of pharmacologically important compounds, accounting for about 70 % of the naturally derived antibiotics that are currently in clinical use. In addition, actinomycetes yield a large number of natural substances with different biological activities, including anticancer activity. In this context, marine sponge derived actinomycetes have attracted special attention in the recent past for their ability to produce novel pharmacological lead compounds.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Newman DJ, Cragg GM (2007) Natural products as sources of new drugs over the last 25 years. J Nat Prod 70(3):461–477

    Article  CAS  Google Scholar 

  2. Fischbach MA, Walsh CT (2009) Antibiotics for emerging pathogens. Science 325(5944):1089–1093

    Article  CAS  Google Scholar 

  3. Mayer A, Glaser KB, Cuevas C, Jacobs RS, Kem W, Little RD, McIntosh JM, Newman DJ, Potts BC, Shuster DE (2010) The odyssey of marine pharmaceuticals: a current pipeline perspective. Trends Pharmacol Sci 31(6):255–265

    Article  CAS  Google Scholar 

  4. Simmons TL, Coates RC, Clark BR, Engene N, Gonzalez D, Esquenazi E, Dorrestein PC, Gerwick WH (2008) Biosynthetic origin of natural products isolated from marine microorganism–invertebrate assemblages. Proc Nat Acad Sci 105(12):4587–4594

    Article  CAS  Google Scholar 

  5. Galeano E, Martínez A (2007) Antimicrobial activity of marine sponges from Urabá Gulf, Colombian Caribbean region. J Med Mycol 17(1):21–24

    Article  Google Scholar 

  6. Hentschel U, Hopke J, Horn M, Friedrich AB, Wagner M, Hacker J, Moore BS (2002) Molecular evidence for a uniform microbial community in sponges from different oceans. Appl Environ Microbiol 68(9):4431–4440

    Article  CAS  Google Scholar 

  7. Friedrich AB, Fischer I, Proksch P, Hacker J, Hentschel U (2001) Temporal variation of the microbial community associated with the Mediterranean sponge Aplysina aerophoba. FEMS Microbiol Ecol 38(2–3):105–115

    Article  CAS  Google Scholar 

  8. Anand TP, Bhat AW, Shouche YS, Roy U, Siddharth J, Sarma SP (2006) Antimicrobial activity of marine bacteria associated with sponges from the waters off the coast of South East India. Microbiol Res 161(3):252–262

    Article  Google Scholar 

  9. Debitus C, Guella G, Mancini I, Waikedre J, Guemas J-P, Nicolas JL, Pietra F (1998) Quinolones from a bacterium and tyrosine metabolites from its host sponge, Suberea creba from the Coral Sea. J Mar Biotechnol 6(3):136–141

    CAS  Google Scholar 

  10. Faulkner DJ (2000) Marine pharmacology. Anto Leeuw 77(2):135–145

    Article  CAS  Google Scholar 

  11. Richelle-Maurer E, Gomez R, Braekman J-C, Van de Vyver G, Van Soest RW, Devijver C (2003) Primary cultures from the marine sponge Xestospongia muta (Petrosiidae, Haplosclerida). J Biotechnol 100(2):169–176

    Article  CAS  Google Scholar 

  12. Selvin J, Joseph S, Asha K, Manjusha W, Sangeetha V, Jayaseema D, Antony M, Denslin Vinitha A (2004) Antibacterial potential of antagonistic Streptomyces sp. isolated from marine sponge Dendrilla nigra. FEMS Microbiol Ecol 50(2):117–122

    Article  CAS  Google Scholar 

  13. Lam KS (2006) Discovery of novel metabolites from marine actinomycetes. Curr Opin Microbiol 9(3):245–251

    Article  CAS  Google Scholar 

  14. Piel J, Hui D, Wen G, Butzke D, Platzer M, Fusetani N, Matsunaga S (2004) Antitumor polyketide biosynthesis by an uncultivated bacterial symbiont of the marine sponge Theonella swinhoei. Proc Nat Acad Sci USA 101(46):16222–16227

    Article  CAS  Google Scholar 

  15. Ellaiah P, Ramana T, Raju K, Sujatha P, Sankar A (2004) Investigations on marine actinomycetes from bay of Bengal near Kakinada coast of Andhra Pradesh. Asian J Microbiol Biotechnol Environ Sci 6:53–56

    Google Scholar 

  16. Lechevalier H (1982) The development of applied microbiology at Rutgers. The State University of New Jersay, NJ, p 3

    Google Scholar 

  17. Tanaka Y, Omura S (1990) Metabolism and products of actinomycetes. An introduction. Actinomycetologica 4(1):13–14

    Article  Google Scholar 

  18. Takizawa M, Colwell RR, Hill RT (1993) Isolation and diversity of actinomycetes in the Chesapeake Bay. Appl Environ Microbiol 59(4):997–1002

    CAS  Google Scholar 

  19. Goodfellow M, O’Donnell AG (1994) Roots of bacterial systematic. The handbook of new bacterial systematic. Academic, London, pp 3–54

    Google Scholar 

  20. Sivakumar K, Sahu MK, Thangaradjou T, Kannan L (2007) Research on marine actinobacteria in India. Ind J Microbiol 47(3):186–196

    Article  CAS  Google Scholar 

  21. Manivasagan P, Venkatesan J, Sivakumar K, Kim S-K (2013) Marine actinobacterial metabolites: current status and future perspectives. Microbiol Res 168(6):311–332

    Article  CAS  Google Scholar 

  22. Pathom-Aree W, Stach JEM, Ward AC, Horikoshi K, Bull AT, Goodfellow M (2006) Diversity of actinomycetes isolated from challenger deep sediment (10, 898 m) from the Mariana Trench. Extremophiles 10:181–189

    Article  CAS  Google Scholar 

  23. Watve MG, Tickoo R, Jog MM, Bhole BD (2001) How many antibiotics are produced by the genus Streptomyces? Arch Microbiol 176(5):386–390

    Article  CAS  Google Scholar 

  24. Manivasagan P, Venkatesan J, Sivakumar K, Kim S-K (2013) Pharmaceutically active secondary metabolites of marine actinobacteria. Microbiol Res 169(4):262–278

    Article  Google Scholar 

  25. Dharmaraj S (2010) Marine Streptomyces as a novel source of bioactive substances. World J Microbiol Biotechnol 26(12):2123–2139

    Article  CAS  Google Scholar 

  26. Stackebrandt S (2000) The prokaryotes: an evolving electronic resource for the microbiological community. Springer, New York

    Google Scholar 

  27. Yoshida A, Seo Y, Suzuki S, Nishino T, Kobayashi T, Hamada-Sato N, Kogure K, Imada C (2008) Actinomycetal community structures in seawater and freshwater examined by DGGE analysis of 16S rRNA gene fragments. Mar Biotechnol 10(5):554–563

    Article  CAS  Google Scholar 

  28. Bull AT (2004) Microbial diversity and bioprospecting. ASM, Washington

    Google Scholar 

  29. Berdy J (2005) Bioactive microbial metabolites. J Antibiot 58(1):1–26

    Article  CAS  Google Scholar 

  30. Strohl WR (2004) Antimicrobials. In: Bull AT (ed) Microbial diversity and bioprospecting. ASM, Washington, pp 336–355

    Chapter  Google Scholar 

  31. Olano C, Méndez C, Salas JA (2009) Antitumor compounds from actinomycetes: from gene clusters to new derivatives by combinatorial biosynthesis. Nat Prod Rep 26(5):628–660

    Article  CAS  Google Scholar 

  32. Mann J (2001) Natural products as immunosuppressive agents. Nat Prod Rep 18(4):417–430

    Article  CAS  Google Scholar 

  33. Oldfield C, Wood NT, Gilbert SC, Murray FD, Faure FR (1998) Desulphurisation of benzothiophene and dibenzothiophene by actinomycete organisms belonging to the genus Rhodococcus, and related taxa. Anton Leeuw 74(1):119–132

    Article  CAS  Google Scholar 

  34. Fenical W, Jensen PR (2006) Developing a new resource for drug discovery: marine actinomycete bacteria. Nat Chem Biol 2(12):666–673

    Article  CAS  Google Scholar 

  35. Blunt JW, Copp BR, Munro MH, Northcote PT, Prinsep MR (2010) Marine natural products. Nat Prod Rep 27(2):165–237

    Article  CAS  Google Scholar 

  36. Fortman J, Sherman DH (2005) Utilizing the power of microbial genetics to bridge the gap between the promise and the application of marine natural products. ChemBioChem 6(6):960–978

    Article  CAS  Google Scholar 

  37. Kennedy J, Baker P, Piper C, Cotter PD, Walsh M, Mooij MJ, Bourke MB, Rea MC, O’Connor PM, Ross RP (2009) Isolation and analysis of bacteria with antimicrobial activities from the marine sponge Haliclona simulans collected from Irish waters. Mar Biotechnol 11(3):384–396

    Article  CAS  Google Scholar 

  38. Reiswig HM (1974) Water transport, respiration and energetics of three tropical marine sponges. J Exp Mar Biol Ecol 14(3):231–249

    Article  Google Scholar 

  39. Müller WE, Grebenjuk VA, Le Pennec G, Schröder H-C, Brümmer F, Hentschel U, Müller IM, Breter H-J (2004) Sustainable production of bioactive compounds by sponges–cell culture and gene cluster approach: a review. Mar Biotechnol 6(2):105–117

    Article  Google Scholar 

  40. Vacelet J, Donadey C (1977) Electron microscope study of the association between some sponges and bacteria. J Exp Mar Biol Ecol 30(3):301–314

    Article  Google Scholar 

  41. Willenz P, Hartman W (1989) Micromorphology and ultrastructure of Caribbean sclerosponges. Mar Biol 103(3):387–401

    Article  Google Scholar 

  42. Hentschel U, Schmid M, Wagner M, Fieseler L, Gernert C, Hacker J (2001) Isolation and phylogenetic analysis of bacteria with antimicrobial activities from the Mediterranean sponges Aplysina aerophoba and Aplysina cavernicola. FEMS Microbiol Ecol 35(3):305–312

    Article  CAS  Google Scholar 

  43. Lee HK, Lee D-S, Lim J, Kim JS, Im KS, Jung JH (1998) Topoisomerase i inhibitors from the Streptomyces sp. strain KM86–9B isolated from a marine sponge. Arch Pharmacal Res 21(6):729–733

    Article  CAS  Google Scholar 

  44. Jayatilake GS, Thornton MP, Leonard AC, Grimwade JE, Baker BJ (1996) Metabolites from an Antarctic sponge-associated bacterium, Pseudomonas aeruginosa. J Nat Prod 59(3):293–296

    Article  CAS  Google Scholar 

  45. Schmidt E, Obraztsova A, Davidson S, Faulkner D, Haygood M (2000) Identification of the antifungal peptide-containing symbiont of the marine sponge Theonella swinhoei as a novel δ-proteobacterium, “Candidatus Entotheonella palauensis”. Mar Biol 136(6):969–977

    Article  CAS  Google Scholar 

  46. Stierle D, Stierle A (1992) Pseudomonic acid derivatives from a marine bacterium. Experientia 48(11–12):1165–1169

    Article  CAS  Google Scholar 

  47. Gandhimathi R, Arunkumar M, Selvin J, Thangavelu T, Sivaramakrishnan S, Kiran GS, Shanmughapriya S, Natarajaseenivasan K (2008) Antimicrobial potential of sponge associated marine actinomycetes. J Med Mycol 18(1):16–22

    Article  Google Scholar 

  48. Montalvo NF, Mohamed NM, Enticknap JJ, Hill RT (2005) Novel actinobacteria from marine sponges. Anto Leeuw 87(1):29–36

    Article  CAS  Google Scholar 

  49. Kamke J, Taylor MW, Schmitt S (2010) Activity profiles for marine sponge-associated bacteria obtained by 16S rRNA vs 16S rRNA gene comparisons. ISME J 4(4):498–508

    Article  CAS  Google Scholar 

  50. Radwan M, Hanora A, Zan J, Mohamed NM, Abo-Elmatty DM, Abou-El-Ela SH, Hill RT (2010) Bacterial community analyses of two Red Sea sponges. Mar Biotechnol 12(3):350–360

    Article  CAS  Google Scholar 

  51. Webster NS, Taylor MW (2012) Marine sponges and their microbial symbionts: love and other relationships. Environ Microbiol 14(2):335–346

    Article  CAS  Google Scholar 

  52. Webster NS, Wilson KJ, Blackall LL, Hill RT (2001) Phylogenetic diversity of bacteria associated with the marine sponge Rhopaloeides odorabile. Appl Environ Microbiol 67(1):434–444

    Article  CAS  Google Scholar 

  53. Imamura N, Nishijima M, Adachi K, Sano H (1993) Novel antimycin antibiotics, urauchimycins A and B, produced by marine actinomycete. J Antibiot 46(2):241–246

    Article  CAS  Google Scholar 

  54. Schneemann I, Nagel K, Kajahn I, Labes A, Wiese J, Imhoff JF (2010) Comprehensive investigation of marine Actinobacteria associated with the sponge Halichondria panicea. Appl Environ Microbiol 76(11):3702–3714

    Article  CAS  Google Scholar 

  55. Kim TK, Garson MJ, Fuerst JA (2005) Marine actinomycetes related to the ‘Salinospora’ group from the Great Barrier Reef sponge Pseudoceratina clavata. Environ Microbiol 7(4):509–518

    Article  CAS  Google Scholar 

  56. Burja AM, Hill RT (2001) Microbial symbionts of the Australian Great Barrier reef sponge, Candidaspongia flabellata. Hydrobiologia 461(1–3):41–47

    Article  Google Scholar 

  57. Hill R (2004) Microbes from marine sponges: a treasure trove of biodiversity for natural products discovery. In: Bull AT (ed) Microbial diversity and bioprospecting. ASM, Washington, pp 177–190

    Chapter  Google Scholar 

  58. Hardoim C, Costa R, Araujo F, Hajdu E, Peixoto R, Lins U, Rosado A, Van Elsas J (2009) Diversity of bacteria in the marine sponge Aplysina fulva in Brazilian coastal waters. Appl Environ Microbiol 75(10):3331–3343

    Article  CAS  Google Scholar 

  59. Zhu P, Li Q, Wang G (2008) Unique microbial signatures of the alien Hawaiian marine sponge Suberites zeteki. Microb Ecol 55(3):406–414

    Article  Google Scholar 

  60. Selvin J, Gandhimathi R, Kiran GS, Priya SS, Ravji TR, Hema T (2009) Culturable heterotrophic bacteria from the marine sponge Dendrilla nigra: Isolation and phylogenetic diversity of actinobacteria. Helgoland Mar Res 63(3):239–247

    Article  Google Scholar 

  61. Lang S, Beil W, Tokuda H, Wicke C, Lurtz V (2004) Improved production of bioactive glucosylmannosyl-glycerolipid by sponge-associated Microbacterium species. Mar Biotechnol 6(2):152–156

    Article  CAS  Google Scholar 

  62. Thomas TRA, Kavlekar DP, LokaBharathi PA (2010) Marine drugs from sponge-microbe association—a review. Mar Drugs 8(4):1417–1468

    Article  CAS  Google Scholar 

  63. Selvin J, Shanmughapriya S, Gandhimathi R, Kiran GS, Ravji TR, Natarajaseenivasan K, Hema T (2009) Optimization and production of novel antimicrobial agents from sponge associated marine actinomycetes Nocardiopsis dassonvillei MAD08. Appl Microbiol Biotechnol 83(3):435–445

    Article  CAS  Google Scholar 

  64. Selvin J (2009) Exploring the antagonistic producer Streptomyces MSI051: implications of polyketide synthase gene type II and a ubiquitous defense enzyme phospholipase A2 in the host sponge Dendrilla nigra. Curr Microbiol 58(5):459–463

    Article  CAS  Google Scholar 

  65. Selvin J, Lipton A (2004) Biopotentials of secondary metabolites isolated from marine sponges. Hydrobiologia 513(1–3):231–238

    Article  CAS  Google Scholar 

  66. Yu S, Deng Z, Proksch P, Lin W (2006) Oculatol, oculatolide, and A-nor sterols from the sponge Haliclona oculata. J Nat Prod 69(9):1330–1334

    Article  CAS  Google Scholar 

  67. Li Z, He L, Miao X (2007) Cultivable bacterial community from South China Sea sponge as revealed by DGGE fingerprinting and 16S rDNA phylogenetic analysis. Curr Microbiol 55(6):465–472

    Article  CAS  Google Scholar 

  68. Kim JS, Im KS, Jung JH, Kim Y-L, Kim J, Shim CJ, Lee C-O (1998) New bioactive polyacetylenes from the marine sponge Petrosia sp. Tetrahedron 54(13):3151–3158

    Article  CAS  Google Scholar 

  69. Lim YJ, Park HS, Im KS, Lee C-O, Hong J, Lee M-Y, Kim D-k, Jung JH (2001) Additional cytotoxic polyacetylenes from the marine sponge Petrosia species. J Nat Prod 64(1):46–53

    Article  CAS  Google Scholar 

  70. Dunlap WC, Battershill CN, Liptrot CH, Cobb RE, Bourne DG, Jaspars M, Long PF, Newman DJ (2007) Biomedicinals from the phytosymbionts of marine invertebrates: a molecular approach. Methods 42(4):358–376

    Article  CAS  Google Scholar 

  71. Sakai R, Higa T, Jefford CW, Bernardinelli G (1986) Manzamine A, a novel antitumor alkaloid from a sponge. J Am Chem Soc 108(20):6404–6405

    Article  CAS  Google Scholar 

  72. Ang KK, Holmes MJ, Higa T, Hamann MT, Kara UA (2000) In vivo antimalarial activity of the beta-carboline alkaloid manzamine A. Antimicrob Agents Chemother 44(6):1645–1649

    Article  CAS  Google Scholar 

  73. Taylor MW, Radax R, Steger D, Wagner M (2007) Sponge-associated microorganisms: evolution, ecology, and biotechnological potential. Microbiol Mol Biol Rev 71(2):295–347

    Article  CAS  Google Scholar 

  74. Liu R, Cui C-B, Duan L, Gu Q-Q, Zhu W-M (2005) Potent in vitro anticancer activity of metacycloprodigiosin and undecylprodigiosin from a sponge-derived actinomycete Saccharopolyspora sp. nov. Arch Pharmacal Res 28(12):1341–1344

    Article  CAS  Google Scholar 

  75. Han Y, Yang B, Zhang F, Miao X, Li Z (2009) Characterization of antifungal chitinase from marine Streptomyces sp. DA11 associated with South China Sea sponge Craniella australiensis. Mar Biotechnol 11(1):132–140

    Article  CAS  Google Scholar 

  76. Mincer TJ, Jensen PR, Kauffman CA, Fenical W (2002) Widespread and persistent populations of a major new marine actinomycete taxon in ocean sediments. Appl Environ Microbiol 68(10):5005–5011

    Article  CAS  Google Scholar 

  77. Kim TK, Hewavitharana AK, Shaw PN, Fuerst JA (2006) Discovery of a new source of rifamycin antibiotics in marine sponge actinobacteria by phylogenetic prediction. Appl Environ Microbiol 72(3):2118–2125

    Article  CAS  Google Scholar 

  78. Conde J, Doria G, Baptista P (2011) Noble metal nanoparticles applications in cancer. J Drug Delivery 2012:1–12

    Article  Google Scholar 

  79. Balmain A, Gray J, Ponder B (2003) The genetics and genomics of cancer. Nat Genet 33:238–244

    Article  CAS  Google Scholar 

  80. Hanahan D, Weinberg RA (2000) The hallmarks of cancer. Cell 100(1):57–70

    Article  CAS  Google Scholar 

  81. Ponder BA (2001) Cancer genetics. Nature 411(6835):336–341

    Article  CAS  Google Scholar 

  82. Praetorius NP, Mandal TK (2007) Engineered nanoparticles in cancer therapy. Recent Pat Drug Deliv Formul 1(1):37–51

    Article  CAS  Google Scholar 

  83. Ferrari M (2005) Cancer nanotechnology: opportunities and challenges. Nat Rev Cancer 5(3):161–171

    Article  CAS  Google Scholar 

  84. Peer D, Karp JM, Hong S, Farokhzad OC, Margalit R, Langer R (2007) Nanocarriers as an emerging platform for cancer therapy. Nat Nanotechnol 2(12):751–760

    Article  CAS  Google Scholar 

  85. Canedo LM, Fernández-Puentes JL, Baz JP (2000) IB-96212, a novel cytotoxic macrolide produced by a marine Micromonospora. II. Physico-chemical properties and structure determination. J Antibiot 53(5):479

    Article  CAS  Google Scholar 

  86. Fernandez-Chimeno RI, Canedo L, Espliego F, Grávalos D, De La Calle F, Fernández-Puentes JL, Romero F (2000) IB-96212, a novel cytotoxic macrolide produced by a marine Micromonospora. I. Taxonomy, fermentation, isolation and biological activities. J Antibiot 53(5):474–478

    Article  CAS  Google Scholar 

  87. Hernandez L, Blanco J, Baz JP, Puentes J, Millán FR, Vázquez FE, Fernández-Chimeno RI, Grávalos DG (2000) 4′-N-methyl-5′-hydroxystaurosporine and 5′-hydroxystaurosporine, new indolocarbazole alkaloids from a marine Micromonospora sp. strain. J Antibiot 53(9):895–902

    Article  CAS  Google Scholar 

  88. Pérez-Tomás R, Montaner B, Llagostera E, Soto-Cerrato V (2003) The prodigiosins, proapoptotic drugs with anticancer properties. Biochem Pharmacol 66(8):1447–1452

    Article  Google Scholar 

  89. Kamal N, Sabaratnam V, Abdullah N, Ho AS, Teo SH, Lee HB (2009) Light-activated cytotoxic compounds from Malaysian microorganisms for photodynamic therapy of cancer. Anton Leeuw 95(2):179–188

    Article  CAS  Google Scholar 

  90. Simmons L, Kaufmann K, Garcia R, Schwär G, Huch V, Müller R (2011) Bendigoles D–F, bioactive sterols from the marine sponge-derived Actinomadura sp. SBMs009. Bioorg Med Chem 19(22):6570–6575

    Article  CAS  Google Scholar 

  91. Motohashi K, Takagi M, Shin-ya K (2010) Tetracenoquinocin and 5-iminoaranciamycin from a sponge-derived Streptomyces sp. Sp080513GE-26. J Nat Prod 73(4):755–758

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This research was supported by a grant from Marine Bioprocess Research Center of the Marine Biotechnology Program funded by the Ministry of Oceans and Fisheries, Republic of Korea. One of the authors Kannan Sivakumar expresses his thanks to the Dean, Centre of Advanced Study in Marine Biology, Faculty of Marine Sciences and Annamalai University authorities for facilities and encouragement. Authors also thank Prof. L. Kannan, Former Vice-chancellor, for critically going through the manuscript and offering comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kannan Sivakumar .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Sivakumar, K., Manivasagan, P., Kim, SK. (2015). Marine Sponge Derived Actinomycetes and Their Anticancer Compounds. In: Kim, SK. (eds) Handbook of Anticancer Drugs from Marine Origin. Springer, Cham. https://doi.org/10.1007/978-3-319-07145-9_34

Download citation

Publish with us

Policies and ethics