Skip to main content

Targeting Cellular Proapoptotic Agents from Marine Sources

  • Chapter
  • First Online:
Handbook of Anticancer Drugs from Marine Origin
  • 2436 Accesses

Abstract

Marine organisms are an important source for the discovery of anticancer agents. In recent years, an increasing number of lead compounds have been isolated and some of them possess potent apoptosis-inducing activities in cancer cells. Apoptosis is a form of programmed cell death and is a critical defense mechanism against the occurrence of cancer. There is a long list of pro- or anti-apoptotic molecules that can trigger apoptosis. Therefore, searching agents that target these pro- or anti-apoptotic molecules has become an important strategy for the anticancer agent developments. This review summarizes some of marine-derived agents with pro-apoptotic activities and discusses the existing challenges and our perspectives on the development of anticancer agents from marine source.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Tan G, Gyllenhaal C, Soejarto DD (2006) Biodiversity as a source of anticancer drugs. Curr Drug Targets 7:265–277

    CAS  Google Scholar 

  2. Kinghorn AD, Chin YW, Swanson SM (2009) Discovery of natural product anticancer agents from biodiverse organisms. Curr Opin Drug Discov Devel 12:189–196

    CAS  Google Scholar 

  3. Mayer AM, Hamann MT (2005) Marine pharmacology in 2001–2002: marine compounds with anthelmintic, antibacterial, anticoagulant, antidiabetic, antifungal, anti-inflammatory, antimalarial, antiplatelet, antiprotozoal, antituberculosis, and antiviral activities; affecting the cardiovascular, immune and nervous systems and other miscellaneous mechanisms of action. Comp Biochem Physiol C Toxicol Pharmacol 140:265–286

    Google Scholar 

  4. Mayer AM, Gustafson KR (2006) Marine pharmacology in 2003–2004: anti-tumour and ­cytotoxic compounds. Eur J Cancer 42:2241–2270

    CAS  Google Scholar 

  5. Mayer AM, Gustafson KR (2008) Marine pharmacology in 2005–2006: antitumour and ­cytotoxic compounds. Eur J Cancer 44:2357–2387

    CAS  Google Scholar 

  6. Adrian TE (2007) Novel marine-derived anti-cancer agents. Curr Pharm Des 13:3417–3426

    CAS  Google Scholar 

  7. Gulder TA, Moore BS (2009) Chasing the treasures of the sea—bacterial marine natural products. Curr Opin Microbiol 12:252–260

    CAS  Google Scholar 

  8. Molinski TF, Dalisay DS, Lievens SL, Saludes JP (2009) Drug development from marine natural products. Nat Rev Drug Discov 8:69–85

    CAS  Google Scholar 

  9. Zheng L-H, Wang Y-J, Sheng J, Wang F, Zheng Y, Lin X-K, Sun M (2011) Antitumor peptides from marine organisms. Mar Drugs 9:1840–1859

    CAS  Google Scholar 

  10. Zheng L, Lin X, Wu N, Liu M, Zheng Y, Sheng J, Ji X, Sun M (2013) Targeting cellular apoptotic pathway with peptides from marine organisms. Biochim Biophys Acta 1:42–48

    Google Scholar 

  11. Singh R, Sharma M, Joshi P, Rawat DS (2008) Clinical status of anti-cancer agents derived from marine sources. Anticancer Agents Med Chem 8:603–617

    CAS  Google Scholar 

  12. Degterev A, Boyce M, Yuan J (2003) A decade of caspases. Oncogene 22:8543–8567

    CAS  Google Scholar 

  13. Thompson CB (1995) Apoptosis in the pathogenesis and treatment of disease. Science 267:1456–1462

    CAS  Google Scholar 

  14. Rowinsky EK (2005) Targeted induction of apoptosis in cancer management: the emerging role of tumor necrosis factor-related apoptosis-inducing ligand receptor activating agents. J Clin Oncol 23:9394–9407

    CAS  Google Scholar 

  15. Call JA, Eckhardt SG, Camidge DR (2008) Targeted manipulation of apoptosis in cancer treatment. Lancet Oncol 9:1002–1011

    CAS  Google Scholar 

  16. Iannolo G, Conticello C, Memeo L, De Maria R (2008) Apoptosis in normal and cancer stem cells. Crit Rev Oncol Hematol 66:42–51

    Google Scholar 

  17. Burz C, Berindan-Neagoe I, Balacescu O, Irimie A (2009) Apoptosis in cancer: key molecular signaling pathways and therapy targets. Acta Oncol 1–11

    Google Scholar 

  18. Fulda S, Pervaiz S (2009) Apoptosis signaling in cancer stem cells. Int J Biochem Cell Biol 42(1):31–38

    Google Scholar 

  19. Ghobrial IM, Witzig TE, Adjei AA (2005) Targeting apoptosis pathways in cancer therapy. CA Cancer J Clin 55:178–194

    Google Scholar 

  20. Eberle J, Fecker LF, Forschner T, Ulrich C, Rowert-Huber J, Stockfleth E (2007) Apoptosis pathways as promising targets for skin cancer therapy. Br J Dermatol 156(Suppl 3):18–24

    CAS  Google Scholar 

  21. Ziegler DS, Kung AL (2008) Therapeutic targeting of apoptosis pathways in cancer. Curr Opin Oncol 20:97–103

    CAS  Google Scholar 

  22. Qiao L, Wong BC (2009) Targeting apoptosis as an approach for gastrointestinal cancer therapy. Drug Resist Updat 12:55–64

    CAS  Google Scholar 

  23. Reed JC (2000) Mechanisms of apoptosis. Am J Pathol 157:1415–1430

    CAS  Google Scholar 

  24. Oliver L, Vallette FM (2005) The role of caspases in cell death and differentiation. Drug Resist Updat 8:163–170

    CAS  Google Scholar 

  25. Abe K, Kurakin A, Mohseni-Maybodi M, Kay B, Khosravi-Far R (2000) The complexity of TNF-related apoptosis-inducing ligand. Ann N Y Acad Sci 926:52–63

    CAS  Google Scholar 

  26. Ozoren N, El-Deiry WS (2003) Cell surface death receptor signaling in normal and cancer cells. Semin Cancer Biol 13:135–147

    Google Scholar 

  27. Peter ME, Krammer PH (2003) The CD95(APO-1/Fas) DISC and beyond. Cell Death Differ 10:26–35

    CAS  Google Scholar 

  28. Thorburn A (2004) Death receptor-induced cell killing. Cell Signal 16:139–144

    CAS  Google Scholar 

  29. Kroemer G (2003) Mitochondrial control of apoptosis: an introduction. Biochem Biophys Res Commun 304:433–435

    CAS  Google Scholar 

  30. Gupta S, Kass GE, Szegezdi E, Joseph B (2009) The mitochondrial death pathway: a promising therapeutic target in diseases. J Cell Mol Med 13(6):1004–1033

    Google Scholar 

  31. Wu N, Gu C, Gu H, Hu H, Han Y, Li Q (2011) Metformin induces apoptosis of lung cancer cells through activating JNK/p38 MAPK pathway and GADD153. Neoplasma 58:482–490

    CAS  Google Scholar 

  32. Yip KW, Reed JC (2008) Bcl-2 family proteins and cancer. Oncogene 27:6398–6406

    CAS  Google Scholar 

  33. Okun I, Balakin KV, Tkachenko SE, Ivachtchenko AV (2008) Caspase activity modulators as anticancer agents. Anticancer Agents Med Chem 8:322–341

    CAS  Google Scholar 

  34. Ghavami S, Hashemi M, Ande SR, Yeganeh B, Xiao W, Eshraghi M, Bus CJ, Kadkhoda K, Wiechec E, Halayko AJ, Los M (2009) Apoptosis and cancer: mutations within caspase genes. J Med Genet 46:497–510

    CAS  Google Scholar 

  35. Kang MH, Reynolds CP (2009) Bcl-2 inhibitors: targeting mitochondrial apoptotic pathways in cancer therapy. Clin Cancer Res 15:1126–1132

    CAS  Google Scholar 

  36. Wong WW, Puthalakath H (2008) Bcl-2 family proteins: the sentinels of the mitochondrial apoptosis pathway. IUBMB Life 60:390–397

    CAS  Google Scholar 

  37. Mutter R, Wills M (2000) Chemistry and clinical biology of the bryostatins. Bioorg Med Chem 8:1841–1860

    CAS  Google Scholar 

  38. Lu Z, Hornia A, Jiang YW, Zang Q, Ohno S, Foster DA (1997) Tumor promotion by depleting cells of protein kinase C delta. Mol Cell Biol 17:3418–3428

    CAS  Google Scholar 

  39. Choi SH, Hyman T, Blumberg PM (2006) Differential effect of bryostatin 1 and phorbol 12-myristate 13-acetate on HOP-92 cell proliferation is mediated by down-regulation of protein kinase Cdelta. Cancer Res 66:7261–7269

    CAS  Google Scholar 

  40. Wang H, Mohammad RM, Werdell J, Shekhar PV (1998) p53 and protein kinase C independent induction of growth arrest and apoptosis by bryostatin 1 in a highly metastatic mammary epithelial cell line: in vitro versus in vivo activity. Int J Mol Med 1:915–923

    CAS  Google Scholar 

  41. Wall NR, Mohammad RM, Al-Katib AM (1999) Bax:Bcl-2 ratio modulation by bryostatin 1 and novel antitubulin agents is important for susceptibility to drug induced apoptosis in the human early pre-B acute lymphoblastic leukemia cell line, Reh. Leuk Res 23:881–888

    CAS  Google Scholar 

  42. Wall NR, Mohammad RM, Reddy KB, Al-Katib AM (2000) Bryostatin 1 induces ubiquitination and proteasome degradation of Bcl-2 in the human acute lymphoblastic leukemia cell line, Reh. Int J Mol Med 5:165–171

    CAS  Google Scholar 

  43. de Arruda M, Cocchiaro CA, Nelson CM, Grinnell CM, Janssen B, Haupt A, Barlozzari T (1995) LU103793 (NSC D-669356): a synthetic peptide that interacts with microtubules and inhibits mitosis. Cancer Res 55:3085–3092

    CAS  Google Scholar 

  44. Maki A, Diwakaran H, Redman B, al-Asfar S, Pettit GR, Mohammad RM, al-Katib A (1995) The bcl-2 and p53 oncoproteins can be modulated by bryostatin 1 and dolastatins in human diffuse large cell lymphoma. Anticancer Drugs 6:392–397

    CAS  Google Scholar 

  45. Younes A, Yasothan U, Kirkpatrick P (2012) Brentuximab vedotin. Nat Rev Drug Discov 11:19–20

    CAS  Google Scholar 

  46. Konishi I, Hosokawa M, Sashima T, Kobayashi H, Miyashita K (2006) Halocynthiaxanthin and fucoxanthinol isolated from Halocynthia roretzi induce apoptosis in human leukemia, breast and colon cancer cells. Comp Biochem Physiol C Toxicol Pharmacol 142:53–59

    Google Scholar 

  47. Dassonneville L, Wattez N, Baldeyrou B, Mahieu C, Lansiaux A, Banaigs B, Bonnard I, Bailly C (2000) Inhibition of topoisomerase II by the marine alkaloid ascididemin and induction of apoptosis in leukemia cells. Biochem Pharmacol 60:527–537

    CAS  Google Scholar 

  48. Matsumoto SS, Biggs J, Copp BR, Holden JA, Barrows LR (2003) Mechanism of ascididemin-induced cytotoxicity. Chem Res Toxicol 16:113–122

    CAS  Google Scholar 

  49. Dirsch VM, Kirschke SO, Estermeier M, Steffan B, Vollmar AM (2004) Apoptosis signaling triggered by the marine alkaloid ascididemin is routed via caspase-2 and JNK to mitochondria. Oncogene 23:1586–1593

    CAS  Google Scholar 

  50. Faircloth G, Cuevas C (2006) Kahalalide F and ES285: potent anticancer agents from marine molluscs. Prog Mol Subcell Biol 43:363–379

    CAS  Google Scholar 

  51. Salcedo M, Cuevas C, Alonso JL, Otero G, Faircloth G, Fernandez-Sousa JM, Avila J, Wandosell F (2007) The marine sphingolipid-derived compound ES 285 triggers an atypical cell death pathway. Apoptosis 12:395–409

    CAS  Google Scholar 

  52. Xie G, Zhu X, Li Q, Gu M, He Z, Wu J, Li J, Lin Y, Li M, She Z, Yuan J (2010) SZ-685 C, a marine anthraquinone, is a potent inducer of apoptosis with anticancer activity by suppression of the Akt/FOXO pathway. Br J Pharmacol 159:689–697

    CAS  Google Scholar 

  53. LaBarbera DV, Modzelewska K, Glazar AI, Gray PD, Kaur M, Liu T, Grossman D, Harper MK, Kuwada SK, Moghal N, Ireland CM (2009) The marine alkaloid naamidine A promotes caspase-dependent apoptosis in tumor cells. Anticancer Drugs 20:425–436

    CAS  Google Scholar 

  54. Kuzmich AS, Fedorov SN, Shastina VV, Shubina LK, Radchenko OS, Balaneva NN, Zhidkov ME, Park J-I, Kwak JY, Stonik VA (2010) The anticancer activity of 3- and 10-bromofascaplysins is mediated by caspase-8,-9,-3-dependent apoptosis. Bioorg Med Chem 18:3834–3840

    CAS  Google Scholar 

  55. Choi HJ, Choi YH, Yee SB, Im E, Jung JH, Kim ND (2005) Ircinin-1 induces cell cycle arrest and apoptosis in SK-MEL-2 human melanoma cells. Mol Carcinog 44:162–173

    CAS  Google Scholar 

  56. Kwon MJ, Nam TJ (2006) Porphyran induces apoptosis related signal pathway in AGS gastric cancer cell lines. Life Sci 79:1956–1962

    CAS  Google Scholar 

  57. Ganesan P, Noda K, Manabe Y, Ohkubo T, Tanaka Y, Maoka T, Sugawara T, Hirata T (2011) Siphonaxanthin, a marine carotenoid from green algae, effectively induces apoptosis in human leukemia (HL-60) cells. Biochim Biophys Acta 1810:497–503

    CAS  Google Scholar 

  58. Moushumi Priya A, Jayachandran S (2012) Induction of apoptosis and cell cycle arrest by Bis (2-ethylhexyl) phthalate produced by marine Bacillus pumilus MB 40. Chem Biol Interact 195:133–143

    CAS  Google Scholar 

  59. Huang TC, Lee JF, Chen JY (2011) Pardaxin, an antimicrobial peptide, triggers caspase-dependent and ROS-mediated apoptosis in HT-1080 cells. Mar Drugs 9:1995–2009

    CAS  Google Scholar 

  60. Choi EJ, Park JS, Kim YJ, Jung JH, Lee JK, Kwon HC, Yang HO (2011) Apoptosis-inducing effect of diketopiperazine disulfides produced by Aspergillus sp. KMD 901 isolated from marine sediment on HCT116 colon cancer cell lines. J Appl Microbiol 110:304–313

    CAS  Google Scholar 

  61. Scorrano L (2009) Opening the doors to cytochrome c: changes in mitochondrial shape and apoptosis. Int J Biochem Cell Biol 41:1875–1883

    CAS  Google Scholar 

  62. Ledgerwood EC, Morison IM (2009) Targeting the apoptosome for cancer therapy. Clin Cancer Res 15:420–424

    CAS  Google Scholar 

  63. Atadja P, Hsu M, Kwon P, Trogani N, Bhalla K, Remiszewski S (2004) Molecular and cellular basis for the anti-proliferative effects of the HDAC inhibitor LAQ824. Novartis Found Symp 259:249–266 (discussion 266–248, 285–248)

    CAS  Google Scholar 

  64. Wang S, Yan-Neale Y, Cai R, Alimov I, Cohen D (2006) Activation of mitochondrial pathway is crucial for tumor selective induction of apoptosis by LAQ824. Cell Cycle 5:1662–1668

    CAS  Google Scholar 

  65. Facompre M, Tardy C, Bal-Mahieu C, Colson P, Perez C, Manzanares I, Cuevas C, Bailly C (2003) Lamellarin D: a novel potent inhibitor of topoisomerase I. Cancer Res 63:7392–7399

    CAS  Google Scholar 

  66. Marco E, Laine W, Tardy C, Lansiaux A, Iwao M, Ishibashi F, Bailly C, Gago F (2005) Molecular determinants of topoisomerase I poisoning by lamellarins: comparison with camptothecin and structure-activity relationships. J Med Chem 48:3796–3807

    CAS  Google Scholar 

  67. Kluza J, Gallego MA, Loyens A, Beauvillain JC, Sousa-Faro JM, Cuevas C, Marchetti P, Bailly C (2006) Cancer cell mitochondria are direct proapoptotic targets for the marine antitumor drug lamellarin D. Cancer Res 66:3177–3187

    CAS  Google Scholar 

  68. Wang C, Liu M, Cheng L, Wei J, Wu N, Zheng L, Lin X (2012) A novel polypeptide from Meretrix meretrix Linnaeus inhibits the growth of human lung adenocarcinoma. Exp Biol Med (Maywood) 237:442–450

    CAS  Google Scholar 

  69. Liu M, Zhao X, Zhao J, Xiao L, Liu H, Wang C, Cheng L, Wu N, Lin X (2012) Induction of apoptosis, G(0)/G(1) phase arrest and microtubule disassembly in K562 leukemia cells by Mere15, a novel polypeptide from Meretrix meretrix Linnaeus. Mar Drugs 10:2596–2607

    CAS  Google Scholar 

  70. Cheng L, Wang C, Liu H, Wang F, Zheng L, Zhao J, Chu E, Lin X (2012) A novel polypeptide extracted from ciona savignyi induces apoptosis through a mitochondrial-mediated pathway in human colorectal carcinoma cells. Clin Colorectal Cancer 11(3):207–214

    Google Scholar 

  71. Dhanasekaran DN, Reddy EP (2008) JNK signaling in apoptosis. Oncogene 27:6245–6251

    CAS  Google Scholar 

  72. Wagner EF, Nebreda AR (2009) Signal integration by JNK and p38 MAPK pathways in cancer development. Nat Rev Cancer 9:537–549

    CAS  Google Scholar 

  73. Urdiales JL, Morata P, Nunez De Castro I, Sanchez-Jimenez F (1996) Antiproliferative effect of dehydrodidemnin B (DDB), a depsipeptide isolated from Mediterranean tunicates. Cancer Lett 102:31–37

    CAS  Google Scholar 

  74. Garcia-Fernandez LF, Losada A, Alcaide V, Alvarez AM, Cuadrado A, Gonzalez L, Nakayama K, Nakayama KI, Fernandez-Sousa JM, Munoz A, Sanchez-Puelles JM (2002) Aplidin induces the mitochondrial apoptotic pathway via oxidative stress-mediated JNK and p38 activation and protein kinase C delta. Oncogene 21:7533–7544

    CAS  Google Scholar 

  75. Cuadrado A, Garcia-Fernandez LF, Gonzalez L, Suarez Y, Losada A, Alcaide V, Martinez T, Fernandez-Sousa JM, Sanchez-Puelles JM, Munoz A (2003) Aplidin induces apoptosis in human cancer cells via glutathione depletion and sustained activation of the epidermal growth factor receptor, Src, JNK, and p38 MAPK. J Biol Chem 278:241–250

    CAS  Google Scholar 

  76. Gonzalez-Santiago L, Suarez Y, Zarich N, Munoz-Alonso MJ, Cuadrado A, Martinez T, Goya L, Iradi A, Saez-Tormo G, Maier JV, Moorthy A, Cato AC, Rojas JM, Munoz A (2006) Aplidin induces JNK-dependent apoptosis in human breast cancer cells via alteration of glutathione homeostasis, Rac1 GTPase activation, and MKP-1 phosphatase downregulation. Cell Death Differ 13:1968–1981

    CAS  Google Scholar 

  77. Broggini M, Marchini SV, Galliera E, Borsotti P, Taraboletti G, Erba E, Sironi M, Jimeno J, Faircloth GT, Giavazzi R, D’Incalci M (2003) Aplidine, a new anticancer agent of marine origin, inhibits vascular endothelial growth factor (VEGF) secretion and blocks VEGF-VEGFR-1 (flt-1) autocrine loop in human leukemia cells MOLT-4. Leukemia 17:52–59

    CAS  Google Scholar 

  78. Taraboletti G, Poli M, Dossi R, Manenti L, Borsotti P, Faircloth GT, Broggini M, D’Incalci M, Ribatti D, Giavazzi R (2004) Antiangiogenic activity of aplidine, a new agent of marine origin. Br J Cancer 90:2418–2424

    CAS  Google Scholar 

  79. Faivre S, Chieze S, Delbaldo C, Ady-Vago N, Guzman C, Lopez-Lazaro L, Lozahic S, ­Jimeno J, Pico F, Armand JP, Martin JA, Raymond E (2005) Phase I and pharmacokinetic study of aplidine, a new marine cyclodepsipeptide in patients with advanced malignancies. J Clin Oncol 23:7871–7880

    CAS  Google Scholar 

  80. Maroun JA, Belanger K, Seymour L, Matthews S, Roach J, Dionne J, Soulieres D, Stewart D, Goel R, Charpentier D, Goss G, Tomiak E, Yau J, Jimeno J, Chiritescu G (2006) Phase I study of Aplidine in a dailyx5 one-hour infusion every 3 weeks in patients with solid tumors refractory to standard therapy.a National Cancer Institute of Canada Clinical Trials Group study: NCIC CTG IND 115. Ann Oncol 17:1371–1378

    CAS  Google Scholar 

  81. Reid JM, Walker DL, Ames MM (1996) Preclinical pharmacology of ecteinascidin 729, a marine natural product with potent antitumor activity. Cancer Chemother Pharmacol 38:329–334

    CAS  Google Scholar 

  82. Takebayashi Y, Pourquier P, Zimonjic DB, Nakayama K, Emmert S, Ueda T, Urasaki Y, Kanzaki A, Akiyama SI, Popescu N, Kraemer KH, Pommier Y (2001) Antiproliferative activity of ecteinascidin 743 is dependent upon transcription-coupled nucleotide-excision repair. Nat Med 7:961–966

    CAS  Google Scholar 

  83. Friedman D, Hu Z, Kolb EA, Gorfajn B, Scotto KW (2002) Ecteinascidin-743 inhibits activated but not constitutive transcription. Cancer Res 62:3377–3381

    CAS  Google Scholar 

  84. Gajate C, An F, Mollinedo F (2002) Differential cytostatic and apoptotic effects of ecteinascidin-743 in cancer cells. Transcription-dependent cell cycle arrest and transcription-independent JNK and mitochondrial mediated apoptosis. J Biol Chem 277:41580–41589

    CAS  Google Scholar 

  85. Monk BJ, Dalton H, Benjamin I, Tanovic A (2012) Trabectedin as a new chemotherapy option in the treatment of relapsed platinum sensitive ovarian cancer. Curr Pharm Des 18(25):3754–3769

    Google Scholar 

  86. Carter NJ, Keam SJ (2010) Trabectedin: a review of its use in soft tissue sarcoma and ovarian cancer. Drugs 70:355–376

    CAS  Google Scholar 

  87. Lee KH, Nishimura S, Matsunaga S, Fusetani N, Horinouchi S, Yoshida M (2005) Inhibition of protein synthesis and activation of stress-activated protein kinases by onnamide A and theopederin B, antitumor marine natural products. Cancer Sci 96:357–364

    CAS  Google Scholar 

  88. Chen W-S, Hou J-N, Guo Y-B, Yang H-L, Xie C-M, Lin Y-C, She Z-G (2011) Bostrycin inhibits proliferation of human lung carcinoma A549 cells via downregulation of the PI3 K/Akt pathway. J Exp Clin Cancer Res 30:17

    CAS  Google Scholar 

  89. LoPiccolo J, Blumenthal GM, Bernstein WB, Dennis PA (2008) Targeting the PI3 K/Akt/mTOR pathway: effective combinations and clinical considerations. Drug Resist Updat 11:32–50

    CAS  Google Scholar 

  90. Chen T, Xu Y, Guo H, Liu Y, Hu P, Yang X, Li X, Ge S, Velu SE, Nadkarni DH, Wang W, Zhang R, Wang H (2011) Experimental therapy of ovarian cancer with synthetic makaluvamine analog: in vitro and in vivo anticancer activity and molecular mechanisms of action. PLoS One 6:6

    Google Scholar 

  91. Bharate SB, Manda S, Mupparapu N, Battini N, Vishwakarma RA (2012) Chemistry and biology of fascaplysin, a potent marine-derived CDK-4 inhibitor. Mini Rev Med Chem 12:650–664

    CAS  Google Scholar 

  92. Lin J, Yan XJ, Chen HM (2007) Fascaplysin, a selective CDK4 inhibitor, exhibit anti-angiogenic activity in vitro and in vivo. Cancer Chemother Pharmacol 59:439–445

    CAS  Google Scholar 

  93. Aubry C, Wilson AJ, Emmerson D, Murphy E, Chan YY, Dickens MP, Garcia MD, Jenkins PR, Mahale S, Chaudhuri B (2009) Fascaplysin-inspired diindolyls as selective inhibitors of CDK4/cyclin D1. Bioorg Med Chem 17:6073–6084

    CAS  Google Scholar 

  94. Mahale S, Aubry C, Jenkins PR, Marechal JD, Sutcliffe MJ, Chaudhuri B (2006) Inhibition of cancer cell growth by cyclin dependent kinase 4 inhibitors synthesized based on the structure of fascaplysin. Bioorg Chem 34:287–297

    CAS  Google Scholar 

  95. Aubry C, Wilson AJ, Jenkins PR, Mahale S, Chaudhuri B, Marechal JD, Sutcliffe MJ (2006) Design, synthesis and biological activity of new CDK4-specific inhibitors, based on fascaplysin. Org Biomol Chem 4:787–801

    CAS  Google Scholar 

  96. Bharate SB, Sawant SD, Singh PP, Vishwakarma RA (2013) Kinase inhibitors of marine origin. Chem Rev 113:6761–6815

    CAS  Google Scholar 

  97. Tas SW, Vervoordeldonk MJ, Tak PP (2009) Gene therapy targeting nuclear factor-kappaB: towards clinical application in inflammatory diseases and cancer. Curr Gene Ther 9:160–170

    CAS  Google Scholar 

  98. Yu Y, Wan Y, Huang C (2009) The biological functions of NF-kappaB1 (p50) and its potential as an anti-cancer target. Curr Cancer Drug Targets 9:566–571

    CAS  Google Scholar 

  99. Kong CS, Kim JA, Yoon NY, Kim SK (2009) Induction of apoptosis by phloroglucinol derivative from Ecklonia Cava in MCF-7 human breast cancer cells. Food Chem Toxicol 47:1653–1658

    CAS  Google Scholar 

  100. Asolkar RN, Freel KC, Jensen PR, Fenical W, Kondratyuk TP, Park EJ, Pezzuto JM (2009) Arenamides A-C, cytotoxic NFkappaB inhibitors from the marine actinomycete Salinispora arenicola. J Nat Prod 72:396–402

    CAS  Google Scholar 

  101. Schumacher M, Cerella C, Eifes S, Chateauvieux S, Morceau F, Jaspars M, Dicato M, Diederich M (2010) Heteronemin, a spongean sesterterpene, inhibits TNF alpha-induced NF-kappa B activation through proteasome inhibition and induces apoptotic cell death. Biochem Pharmacol 79:610–622

    CAS  Google Scholar 

  102. Jiang Y, Miao Z-H, Xu L, Yu B, Gong J-X, Tong L-J, Chen Y, Zhou Z-L, Liu H-C, Wang Y, Guo Y-W, Ding J (2011) Drug transporter-independent liver cancer cell killing by a marine steroid methyl spongoate via apoptosis induction. J Biol Chem 286:26461–26469

    CAS  Google Scholar 

  103. Dirsch VM, Muller IM, Eichhorst ST, Pettit GR, Kamano Y, Inoue M, Xu JP, Ichihara Y, Wanner G, Vollmar AM (2003) Cephalostatin 1 selectively triggers the release of Smac/DIABLO and subsequent apoptosis that is characterized by an increased density of the mitochondrial matrix. Cancer Res 63:8869–8876

    CAS  Google Scholar 

  104. Muller IM, Dirsch VM, Rudy A, Lopez-Anton N, Pettit GR, Vollmar AM (2005) Cephalostatin 1 inactivates Bcl-2 by hyperphosphorylation independent of M-phase arrest and DNA damage. Mol Pharmacol 67:1684–1689

    Google Scholar 

  105. Cioca DP, Kitano K (2002) Induction of apoptosis and CD10/neutral endopeptidase expression by jaspamide in HL-60 line cells. Cell Mol Life Sci 59:1377–1387

    CAS  Google Scholar 

  106. Liu M, Zhang W, Wei J, Qiu L, Lin X (2012) Marine bromophenol bis(2,3-dibromo-4,5-dihydroxybenzyl) ether, induces mitochondrial apoptosis in K562 cells and inhibits topoisomerase I in vitro. Toxicol Lett 211:126–134

    CAS  Google Scholar 

  107. Drew L, Fine RL, Do TN, Douglas GP, Petrylak DP (2002) The novel antimicrotubule agent cryptophycin 52 (LY355703) induces apoptosis via multiple pathways in human prostate cancer cells. Clin Cancer Res 8:3922–3932

    CAS  Google Scholar 

  108. Choi HJ, Bae SJ, Kim ND, Jung JH, Choi YH (2004) Induction of apoptosis by dideoxypetrosynol A, a polyacetylene from the sponge Petrosia sp., in human skin melanoma cells. Int J Mol Med 14:1091–1096

    CAS  Google Scholar 

  109. Salma Y, Lafont E, Therville N, Carpentier S, Bonnafe MJ, Levade T, Genisson Y, Andrieu-Abadie N (2009) The natural marine anhydrophytosphingosine, Jaspine B, induces apoptosis in melanoma cells by interfering with ceramide metabolism. Biochem Pharmacol 78:477–485

    CAS  Google Scholar 

  110. Wrasidlo W, Mielgo A, Torres VA, Barbero S, Stoletov K, Suyama TL, Klemke RL, Gerwick WH, Carson DA, Stupack DG (2008) The marine lipopeptide somocystinamide A triggers apoptosis via caspase 8. Proc Natl Acad Sci U S A 105:2313–2318

    CAS  Google Scholar 

  111. Harada H, Yamashita U, Kurihara H, Fukushi E, Kawabata J, Kamei Y (2002) Antitumor activity of palmitic acid found as a selective cytotoxic substance in a marine red alga. Anticancer Res 22:2587–2590

    CAS  Google Scholar 

  112. Almaguel FG, Liu JW, Pacheco FJ, Casiano CA, De Leon M (2009) Activation and reversal of lipotoxicity in PC12 and rat cortical cells following exposure to palmitic acid. J Neurosci Res 87:1207–1218

    CAS  Google Scholar 

  113. Ocio EM, Maiso P, Chen X, Garayoa M, Alvarez-Fernandez S, San-Segundo L, Vilanova D, Lopez-Corral L, Montero JC, Hernandez-Iglesias T, de Alava E, Galmarini C, Aviles P, Cuevas C, San-Miguel JF, Pandiella A (2009) Zalypsis: a novel marine-derived compound with potent antimyeloma activity that reveals high sensitivity of malignant plasma cells to DNA double-strand breaks. Blood 113:3781–3791

    CAS  Google Scholar 

  114. Massard C, Margetts J, Amellal N, Drew Y, Bahleda R, Stevens P, Armand JP, Calvert H, Soria JC, Coronado C, Kahatt C, Alfaro V, Siguero M, Fernandez-Teruel C, Plummer R (2013) Phase I study of PM00104 (Zalypsis(R)) administered as a 1-hour weekly infusion resting every fourth week in patients with advanced solid tumors. Invest New Drugs 31:623–630

    CAS  Google Scholar 

  115. Crews CM, Collins JL, Lane WS, Snapper ML, Schreiber SL (1994) GTP-dependent binding of the antiproliferative agent didemnin to elongation factor 1 alpha. J Biol Chem 269:15411–15414

    CAS  Google Scholar 

  116. Vera MD, Joullie MM (2002) Natural products as probes of cell biology: 20 years of didemnin research. Med Res Rev 22:102–145

    CAS  Google Scholar 

  117. Johnson KL, Lawen A (1999) Rapamycin inhibits didemnin B-induced apoptosis in human HL-60 cells: evidence for the possible involvement of FK506-binding protein 25. Immunol Cell Biol 77:242–248

    CAS  Google Scholar 

  118. Bowman EJ, Gustafson KR, Bowman BJ, Boyd MR (2003) Identification of a new chondropsin class of antitumor compound that selectively inhibits V-ATPases. J Biol Chem 278:44147–44152

    CAS  Google Scholar 

  119. Chevallier C, Laprevote O, Bignon J, Debitus C, Guenard D, Sevenet T (2004) Isolation of cytotoxic chondropsins, macrolide lactams from the New-Caledonian marine sponge Psammoclemma sp. and electrospray ion trap multiple stage MS study of these macrolides. Nat Prod Res 18:479–484

    CAS  Google Scholar 

  120. Burres NS, Clement JJ (1989) Antitumor activity and mechanism of action of the novel marine natural products mycalamide-A and -B and onnamide. Cancer Res 49:2935–2940

    CAS  Google Scholar 

  121. Hood KA, West LM, Northcote PT, Berridge MV, Miller JH (2001) Induction of apoptosis by the marine sponge (Mycale) metabolites, mycalamide A and pateamine. Apoptosis 6:207–219

    CAS  Google Scholar 

  122. Gurel G, Blaha G, Steitz TA, Moore PB (2009) The structures of triacetyloleandomycin and mycalamide A bound to the large ribosomal subunit of Haloarcula marismortui. Antimicrob Agents Chemother 53(12):5010–5014

    Google Scholar 

  123. Hood KA, Backstrom BT, West LM, Northcote PT, Berridge MV, Miller JH (2001) The novel cytotoxic sponge metabolite peloruside A, structurally similar to bryostatin-1, has unique bioactivity independent of protein kinase C. Anticancer Drug Des 16:155–166

    CAS  Google Scholar 

  124. Hood KA, West LM, Rouwe B, Northcote PT, Berridge MV, Wakefield SJ, Miller JH (2002) Peloruside A, a novel antimitotic agent with paclitaxel-like microtubule- stabilizing activity. Cancer Res 62:3356–3360

    CAS  Google Scholar 

  125. Miller JH, Rouwe B, Gaitanos TN, Hood KA, Crume KP, Backstrom BT, La Flamme AC, Berridge MV, Northcote PT (2004) Peloruside A enhances apoptosis in H-ras-transformed cells and is cytotoxic to proliferating T cells. Apoptosis 9:785–796

    CAS  Google Scholar 

  126. Tong Y, Zhang X, Tian F, Yi Y, Xu Q, Li L, Tong L, Lin L, Ding J (2005) Philinopside A, a novel marine-derived compound possessing dual anti-angiogenic and anti-tumor effects. Int J Cancer 114:843–853

    CAS  Google Scholar 

  127. Aoki S, Cho SH, Ono M, Kuwano T, Nakao S, Kuwano M, Nakagawa S, Gao JQ, Mayumi T, Shibuya M, Kobayashi M (2006) Bastadin 6, a spongean brominated tyrosine derivative, inhibits tumor angiogenesis by inducing selective apoptosis to endothelial cells. Anticancer Drugs 17:269–278

    CAS  Google Scholar 

  128. Hwang Y, Rowley D, Rhodes D, Gertsch J, Fenical W, Bushman F (1999) Mechanism of inhibition of a poxvirus topoisomerase by the marine natural product sansalvamide A. Mol Pharmacol 55:1049–1053

    CAS  Google Scholar 

  129. Pan PS, Vasko RC, Lapera SA, Johnson VA, Sellers RP, Lin CC, Pan CM, Davis MR, Ardi VC, McAlpine SR (2009) A comprehensive study of Sansalvamide A derivatives: The structure-activity relationships of 78 derivatives in two pancreatic cancer cell lines. Bioorg Med Chem 17:5806–5825

    CAS  Google Scholar 

  130. Esposito G, Aiello A, Carbonelli S, Menna M, Fattorusso E, Iuvone T (2002) Mechanism of cytotoxicity of turbinamide in vitro. Anticancer Res 22:2827–2831

    CAS  Google Scholar 

  131. Wei SY, Li M, Tang SA, Sun W, Xu B, Cui JR, Lin WH (2008) Induction of apoptosis accompanying with G(1) phase arrest and microtubule disassembly in human hepatoma cells by jaspolide B, a new isomalabaricane-type triterpene. Cancer Lett 262(1):114–122

    Google Scholar 

  132. Hu Y, MacMillan JB, Erythrazoles A-B (2011) cytotoxic benzothiazoles from a marine-derived Erythrobacter sp. Org Lett 13:6580–6583

    CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (No.81001396 and No. 81273550).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiukun Lin .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Liu, M., Lin, X., Zheng, L. (2015). Targeting Cellular Proapoptotic Agents from Marine Sources. In: Kim, SK. (eds) Handbook of Anticancer Drugs from Marine Origin. Springer, Cham. https://doi.org/10.1007/978-3-319-07145-9_25

Download citation

Publish with us

Policies and ethics