Skip to main content

Toluquinol, A Marine Fungus Metabolite, Inhibits Some of the Hallmarks of Cancer

  • Chapter
  • First Online:
Handbook of Anticancer Drugs from Marine Origin

Abstract

Ten general hallmarks of cancer have been proposed so far: sustaining proliferative signaling, evading growth suppressors, resisting apoptosis, enabling replicative immortality, inducing angiogenesis, activating invasion and metastasis, genome instability and mutation, tumor promoting inflammation, avoiding immune destruction and deregulating cellular energetic. Targeting the mentioned “hallmarks” in a tumor can block cancer’s ability to grow and metastasize. Thus, the better understanding of cancer biology has allowed the development of targeted therapies and numerous patients have been benefited so far. The best strategy would be the use of drugs or drug combinations that can target multiple hallmarks at the same time. The chemical and biological diversity of the marine environment is being exploited aiming to discover new anticancer drugs. Toluquinol is an example of a marine compound with antitumor properties. Isolated from the marine fungus Penicillium sp. HL-85-ALS5-R004, this compound inhibits the proliferation of actively growing tumor cells, blocks angiogenesis in vitro and in vivo, and induces apoptosis in tumor and endothelial cells. Taken together, these data indicate that toluquinol inhibits several hallmarks of cancer, essential for tumor progression and invasion, underscoring its potential pharmacological utility for new cancer therapies.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ferlay J, Shin HR, Bray F, Forman D, Mathers C, Parkin DM (2010) Estimates of worldwide burden of cancer in 2008: GLOBOCAN 2008. Int J Cancer 127:2893–2917

    CAS  Google Scholar 

  2. Jemal A, Siegel R, Xu J, Ward E (2010) Cancer statistics, 2010. CA Cancer J Clin 60:277–300

    Google Scholar 

  3. Dollé L, Depypere HT, Bracke ME (2006) Anti-invasive/anti-metastasis strategies: new roads, new tools and new hopes. Curr Cancer Drug Targets 6:729–751

    Google Scholar 

  4. Hanahan D, Weinberg RA (2000) The hallmarks of cancer. Cell 100:57–70

    CAS  Google Scholar 

  5. Hanahan D, Weinberg RA (2011) Hallmarks of cancer: the next generation. Cell 144:646–674

    CAS  Google Scholar 

  6. Lemmon MA, Schlessinger J (2010) Cell signaling by receptor tyrosine kinases. Cell 141(7):1117–34

    CAS  Google Scholar 

  7. Witsch E, Sela M, Yarden Y (2010) Roles for growth factors in cancer progression. Physiology (Bethesda) 25:85–101

    CAS  Google Scholar 

  8. Hynes NE, MacDonald G (2009) ErbB receptors and signaling pathways in cancer. Curr Opin Cell Biol 21:177–184

    CAS  Google Scholar 

  9. Perona R (2006) Cell signalling: growth factors and tyrosine kinase receptors. Clin Transl Oncol 8:77–82

    CAS  Google Scholar 

  10. Burkhart DL, Sage J (2008) Cellular mechanisms of tumour suppression by the retinoblastoma gene. Nat Rev Cancer 8:671–682

    CAS  Google Scholar 

  11. Deshpande A, Sicinski P, Hinds PW (2005) Cyclins and cdks in development and cancer: a perspective. Oncogene 24:2909–2915

    CAS  Google Scholar 

  12. Sherr CJ, McCormick F (2002) The RB and p53 pathways in cancer. Cancer Cell 2:103–112

    CAS  Google Scholar 

  13. Curto M, Cole BK, Lallemand D, Liu CH, McClatchey AI (2007) Contact-dependent inhibition of EGFR signaling by Nf2/Merlin. J Cell Biol 177:893–903

    CAS  Google Scholar 

  14. Okada T, Lopez-Lago M, Giancotti FG (2005) Merlin/NF-2 mediates contact inhibition of growth by suppressing recruitment of Rac to the plasma membrane. J Cell Biol 171:361–371

    CAS  Google Scholar 

  15. Partanen JI, Nieminen AI, Klefstrom J (2009) 3D view to tumor suppression: Lkb1, polarity and the arrest of oncogenic c-Myc. Cell Cycle 8:716–724

    CAS  Google Scholar 

  16. Hezel AF, Bardeesy N (2008) LKB1; linking cell structure and tumor suppression. Oncogene 27:6908–6919

    CAS  Google Scholar 

  17. Shaw RJ (2009) Tumor suppression by LKB1: SIK-ness prevents metastasis. Sci Signal 2:pe55

    Google Scholar 

  18. Ikushima H, Miyazono K (2010) TGFbeta signalling: a complex web in cancer progression. Nat Rev Cancer 10:415–424

    CAS  Google Scholar 

  19. Massagué J (2008) TGFb in cancer. Cell 134:215–230

    Google Scholar 

  20. Bierie B, Moses HL (2006) Tumour microenvironment: TGFbeta: the molecular Jekyll and Hyde of cancer. Nat Rev Cancer 6:506–520

    CAS  Google Scholar 

  21. Adams JM, Cory S (2007) The Bcl-2 apoptotic switch in cancer development and therapy. Oncogene 26:1324–1337

    CAS  Google Scholar 

  22. Pop C, Salvesen GS (2009) Human caspases: activation, specificity, and regulation. J Biol Chem 284:21777–21781

    CAS  Google Scholar 

  23. Cryns V, Yuan J (1998) Proteases to die for. Genes Dev 12:1551–1570

    CAS  Google Scholar 

  24. Willis SN, Adams JM (2005) Life in the balance: how BH3-only proteins induce apoptosis. Curr Opin Cell Biol 17:617–625

    CAS  Google Scholar 

  25. Lowe SW, Cepero E, Evan G (2004) Intrinsic tumour suppression. Nature 432:307–315

    CAS  Google Scholar 

  26. Fiandalo MV, Kyprianou N (2012) Caspase control: protagonists of cancer cell apoptosis. Exp Oncol 34:165–175

    CAS  Google Scholar 

  27. Boya P, Reggiori F, Codogno P (2013) Emerging regulation and functions of autophagy. Nat Cell Biol 15:713–720

    CAS  Google Scholar 

  28. Levine B, Kroemer G (2008) Autophagy in the pathogenesis of disease. Cell 132:27–42

    CAS  Google Scholar 

  29. Shi Z, Li CY, Zhao S, Yu Y, An N, Liu YX, Wu CF, Yue BS, Bao JK (2013) A systems biology analysis of autophagy in cancer therapy. Cancer Lett 337:149–160

    CAS  Google Scholar 

  30. Sinha S, Levine B (2008) The autophagy effector Beclin 1: a novel BH3-only protein. Oncogene 27(Suppl 1):S137–S148

    CAS  Google Scholar 

  31. Bhutia SK, Mukhopadhyay S, Sinha N, Das DN, Panda PK, Patra SK, Maiti TK, Mandal M, Dent P, Wang XY, Das SK, Sarkar D, Fisher PB (2013) Autophagy: cancer’s friend or foe?. Adv Cancer Res 118:61–95

    CAS  Google Scholar 

  32. Ouyang L, Shi Z, Zhao S, Wang FT, Zhou TT, Liu B, Bao JK (2012) Programmed cell death pathways in cancer: a review of apoptosis, autophagy and programmed necrosis. Cell Prolif 45:487–498

    CAS  Google Scholar 

  33. Sethi G, Shanmugam MK, Ramachandran L, Kumar AP, Tergaonkar V (2012) Multifaceted link between cancer and inflammation. Biosci Rep 32:1–15

    CAS  Google Scholar 

  34. Grivennikov SI, Greten FR, Karin M (2010) Immunity, inflammation, and cancer. Cell 140:883–899

    CAS  Google Scholar 

  35. Galluzzi L, Kroemer G (2008) Necroptosis: a specialized pathway of programmed necrosis. Cell 135:1161–1163

    CAS  Google Scholar 

  36. Campisi J (2013) Aging, cellular senescence, and cancer. Annu Rev Physiol 75:685–705

    CAS  Google Scholar 

  37. Ince TA, Richardson AL, Bell GW, Saitoh M, Godar S, Karnoub AE, Iglehart JD, Weinberg RA (2007) Transformation of different human breast epithelial cell types leads to distinct tumor phenotypes. Cancer Cell 12:160–170

    CAS  Google Scholar 

  38. Passos JF, Saretzki G, von Zglinicki T (2007) DNA damage in telomeres and mitochondria during cellular senescence: is there a connection? Nucleic Acids Res 35:7505–7513

    CAS  Google Scholar 

  39. Zhang H, Herbert BS, Pan KH, Shay JW, Cohen SN (2004) Disparate effects of telomere attrition on gene expression during replicative senescence of human mammary epithelial cells cultured under different conditions. Oncogene 23:6193–6198

    CAS  Google Scholar 

  40. Sherr CJ, DePinho RA (2000) Cellular senescence: mitotic clock or culture shock? Cell 102:407–410

    CAS  Google Scholar 

  41. Blasco MA (2005) Telomeres and human disease: ageing, cancer and beyond. Nat Rev Genet 6:611–622

    CAS  Google Scholar 

  42. Shay JW, Wright WE (2000) Hayflick, his limit, and cellular ageing. Nat Rev Mol Cell Biol 1:72–76

    CAS  Google Scholar 

  43. Heaphy CM, Meeker AK (2011) The potential utility of telomere-related markers for cancer diagnosis. J Cell Mol Med 15:1227–1238

    CAS  Google Scholar 

  44. Kawai T, Hiroi S, Nakanishi K, Meeker AK (2007) Telomere length and telomerase expression in atypical adenomatous hyperplasia and small bronchioloalveolar carcinoma of the lung. Am J Clin Pathol 127:254–262

    CAS  Google Scholar 

  45. Raynaud CM, Hernandez J, Llorca FP, Nuciforo P, Mathieu MC, Commo F, Delaloge S, Sabatier L, André F, Soria JC (2010) DNA damage repair and telomere length in normal breast, preneoplastic lesions, and invasive cancer. Am J Clin Oncol 33:341–345

    CAS  Google Scholar 

  46. Park JI, Venteicher AS, Hong JY, Choi J, Jun S, Shkreli M, Chang W, Meng Z, Cheung P, Ji H, McLaughlin M, Veenstra TD, Nusse R, McCrea PD, Artandi SE (2009) Telomerase modulates Wnt signaling by association with target gene chromatin. Nature 460:66–72

    CAS  Google Scholar 

  47. Kang HJ, Choi YS, Hong SB, Kim KW, Woo RS, Won SJ, Kim EJ, Jeon HK, Jo SY, Kim TK, Bachoo R, Reynolds IJ, Gwag BJ, Lee HW (2004) Ectopic expression of the catalytic subunit of telomerase protects against brain injury resulting from ischemia and NMDA-induced neurotoxicity. J Neurosci 24:1280–1287

    CAS  Google Scholar 

  48. Masutomi K, Possemato R, Wong JM, Currier JL, Tothova Z, Manola JB, Ganesan S, Lansdorp PM, Collins K, Hahn WC (2005) The telomerase reverse transcriptase regulates chromatin state and DNA damage responses. Proc Natl Acad Sci U S A 102:8222–8227

    CAS  Google Scholar 

  49. Maida Y, Yasukawa M, Furuuchi M, Lassmann T, Possemato R, Okamoto N, Kasim V, Hayashizaki Y, Hahn WC, Masutomi K (2009) An RNA-dependent RNA polymerase formed by TERT and the RMRP RNA. Nature 461:230–235

    CAS  Google Scholar 

  50. Heinke J, Patterson C, Moser M (2012) Life is a pattern: vascular assembly within the embryo. Front Biosci (Elite Ed) 4:2269–2288

    Google Scholar 

  51. Carmeliet P (2005) Angiogenesis in life, disease and medicine. Nature 438:932–936

    CAS  Google Scholar 

  52. Hanahan D, Folkman J (1996) Patterns and emerging mechanisms of the angiogenic switch during tumorigenesis. Cell 86:353–364

    CAS  Google Scholar 

  53. Ferrara N, Gerber HP, LeCouter J (2003) The biology of VEGF and its receptors. Nat Med 9:669–676

    CAS  Google Scholar 

  54. Ferrara N (2009) Vascular endothelial growth factor. Arterioscler Thromb Vasc Biol 29:789–791

    CAS  Google Scholar 

  55. Mac Gabhann F, Popel AS (2008) Systems biology of vascular endothelial growth factors. Microcirculation 15:715–738

    CAS  Google Scholar 

  56. Carmeliet P (2005) VEGF as a key mediator of angiogenesis in cancer. Oncology 69:4–10

    CAS  Google Scholar 

  57. Grant MA, Kalluri R (2005) Structural basis for the functions of endogenous angiogenesis inhibitors. Cold Spring Harb Symp Quant Biol 70:399–410

    CAS  Google Scholar 

  58. Raza A, Franklin MJ, Dudek AZ (2010) Pericytes and vessel maturation during tumor angiogenesis and metastasis. Am J Hematol 85:593–598

    CAS  Google Scholar 

  59. Bergers G, Song S (2005) The role of pericytes in blood-vessel formation and maintenance. Neuro-oncol 7:452–464

    CAS  Google Scholar 

  60. Prokopiou EM, Ryder SA, Walsh JJ (2013) Tumour vasculature targeting agents in hybrid/conjugate drugs. Angiogenesis 16:503–524

    CAS  Google Scholar 

  61. Pasqualini R, Arap W, McDonald DM (2002) Probing the structural and molecular diversity of tumor vasculature. Trends Mol Med 8:563–571

    CAS  Google Scholar 

  62. Baeriswyl V, Christofori G (2009) The angiogenic switch in carcinogenesis. Semin Cancer Biol 19:329–337

    CAS  Google Scholar 

  63. Zee YK, O’Connor JP, Parker GJ, Jackson A, Clamp AR, Taylor MB, Clarke NW, Jayson GC (2010) Imaging angiogenesis of genitourinary tumors. Nat Rev Urol 7:69–82

    Google Scholar 

  64. Qian BZ, Pollard JW (2010) Macrophage diversity enhances tumor progression and metastasis. Cell 141:39–51

    CAS  Google Scholar 

  65. Zumsteg A, Christofori G (2009) Corrupt policemen: inflammatory cells promote tumor angiogenesis. Curr Opin Oncol 21:60–70

    Google Scholar 

  66. Murdoch C, Muthana M, Coffelt SB, Lewis CE (2008) The role of myeloid cells in the promotion of tumour angiogenesis. Nat Rev Cancer 8:618–631

    CAS  Google Scholar 

  67. De Palma M, Murdoch C, Venneri MA, Naldini L, Lewis CE (2007) Tie2-expressing monocytes: regulation of tumor angiogenesis and therapeutic implications. Trends Immunol 28:519–524

    CAS  Google Scholar 

  68. Patenaude A, Parker J, Karsan A (2010) Involvement of endothelial progenitor cells in tumor vascularization. Microvasc Res 79:217–223

    CAS  Google Scholar 

  69. Al-Rawi MA, Jiang WG (2011) Lymphangiogenesis and cancer metastasis. Front Biosci 16:723–739

    CAS  Google Scholar 

  70. Talmadge JE, Fidler IJ (2010) AACR centennial series: the biology of cancer metastasis: historical perspective. Cancer Res 70:5649–5669

    CAS  Google Scholar 

  71. Fidler IJ (2003) The pathogenesis of cancer metastasis: the ‘seed and soil’ hypothesis revisited. Nat Rev Cancer 3:453–458

    CAS  Google Scholar 

  72. Berx G, van Roy F (2009) Involvement of members of the cadherin superfamily in cancer. Cold Spring Harb Perspect Biol 1:a003129

    Google Scholar 

  73. Cavallaro U, Christofori G (2004) Cell adhesion and signalling by cadherins and Ig-CAMs in cancer. Nat Rev Cancer 4:118–132

    CAS  Google Scholar 

  74. Franco-Chuaire ML, Magda Carolina SC, Chuaire-Noack L (2013) Epithelial-mesenchymal transition (EMT): principles and clinical impact in cancer therapy. Invest Clin 54:186–205

    Google Scholar 

  75. Klymkowsky MW, Savagner P (2009) Epithelial–mesenchymal transition: a cancer researcher’s conceptual friend and foe. Am J Pathol 174:1588–1593

    CAS  Google Scholar 

  76. Polyak K, Haviv I, Campbell IG (2009) Co-evolution of tumor cells and their microenvironment. Trends Genet 25:30–38

    CAS  Google Scholar 

  77. Thiery JP, Acloque H, Huang RY, Nieto MA (2009) Epithelial mesenchymal transitions in development and disease. Cell 139:871–890

    CAS  Google Scholar 

  78. Yilmaz M, Christofori G (2009) EMT, the cytoskeleton, and cancer cell invasion. Cancer Metastasis Rev 28:15–33

    Google Scholar 

  79. Barrallo-Gimeno A, Nieto MA (2005) The Snail genes as inducers of cell movement and survival: implications in development and cancer. Development 132:3151–3161

    CAS  Google Scholar 

  80. Micalizzi DS, Farabaugh SM, Ford HL (2010) Epithelial-mesenchymal transition in cancer: parallels between normal development and tumor progression. J Mammary Gland Biol Neoplasia 15:117–134

    Google Scholar 

  81. Hugo H, Ackland ML, Blick T, Lawrence MG, Clements JA, Williams ED, Thompson EW. (2007) Epithelial—mesenchymal and mesenchymal—epithelial transitions in carcinoma progression. J Cell Physiol 213:374–383

    CAS  Google Scholar 

  82. Egeblad M, Nakasone ES, Werb Z (2010) Tumors as organs: complex tissues that interface with the entire organism. Dev Cell 18:884–901

    CAS  Google Scholar 

  83. Karnoub AE, Dash AB, Vo AP, Sullivan A, Brooks MW, Bell GW, Richardson AL, Polyak K, Tubo R, Weinberg RA (2007) Mesenchymal stem cells within tumour stroma promote breast cancer metastasis. Nature 449:557–563

    CAS  Google Scholar 

  84. Hao NB, Lü MH, Fan YH, Cao YL, Zhang ZR, Yang SM (2012) Macrophages in tumor microenvironments and the progression of tumors. Clin Dev Immunol 2012:948098

    Google Scholar 

  85. Madsen CD, Sahai E (2010) Cancer dissemination—Lessons from leukocytes. Dev Cell 19:13–26

    CAS  Google Scholar 

  86. Kessenbrock K, Plaks V, Werb Z (2010) Matrix metalloproteinases: Regulators of the tumor microenvironment. Cell 141:52–67

    CAS  Google Scholar 

  87. Gupta GP, Minn AJ, Kang Y, Siegel PM, Serganova I, Cordón-Cardo C, Olshen AB, Gerald WL, Massagué J (2005) Identifying sitespecific metastasis genes and functions. Cold Spring Harb Symp Quant Biol 70:149–158

    CAS  Google Scholar 

  88. Peinado H, Lavotshkin S, Lyden D (2011) The secreted factors responsible for pre-metastatic niche formation: Old sayings and new thoughts. Semin Cancer Biol 21:139–146

    CAS  Google Scholar 

  89. Coghlin C, Murray GI (2010) Current and emerging concepts in tumour metastasis. J Pathol 222:1–15

    CAS  Google Scholar 

  90. Negrini S, Gorgoulis VG, Halazonetis TD (2010) Genomic instability—an evolving hallmark of cancer. Nat Rev Mol Cell Biol 11:220–228

    CAS  Google Scholar 

  91. Jackson SP, Bartek J (2009) The DNA-damage response in human biology and disease. Nature 461:1071–1078

    CAS  Google Scholar 

  92. Lane DP (1992) Cancer. p53, guardian of the genome. Nature 358:15–16

    CAS  Google Scholar 

  93. Ciccia A, Elledge SJ (2010) The DNA damage response: making it safe to play with knives. Mol Cell 40:179–204

    CAS  Google Scholar 

  94. Barnes DE, Lindahl T (2004) Repair andgenetic consequences of endogenous DNA base damage in mammalian cells. Annu Rev Genet 38:445–476

    CAS  Google Scholar 

  95. Artandi SE, DePinho RA (2010) Telomeres and telomerase in cancer. Carcinogenesis 31:9–18

    CAS  Google Scholar 

  96. Sjöblom T, Jones S, Wood LD, Parsons DW, Lin J, Barber TD, Mandelker D, Leary RJ, Ptak J, Silliman N, Szabo S, Buckhaults P, Farrell C, Meeh P, Markowitz SD, Willis J, Dawson D, Willson JK, Gazdar AF, Hartigan J, Wu L, Liu C, Parmigiani G, Park BH, Bachman KE, Papadopoulos N, Vogelstein B, Kinzler KW, Velculescu VE (2006) The consensus coding sequences of human breast and colorectal cancers. Science 314:268–274

    Google Scholar 

  97. Parsons DW, Jones S, Zhang X, Lin JC, Leary RJ, Angenendt P, Mankoo P, Carter H, Siu IM, Gallia GL, Olivi A, McLendon R, Rasheed BA, Keir S, Nikolskaya T, Nikolsky Y, Busam DA, Tekleab H, Diaz LA Jr, Hartigan J, Smith DR, Strausberg RL, Marie SK, Shinjo SM, Yan H, Riggins GJ, Bigner DD, Karchin R, Papadopoulos N, Parmigiani G, Vogelstein B, Velculescu VE, Kinzler KW (2008) An integrated genomic analysis of human glioblastoma multiforme. Science 321:1807–1812

    CAS  Google Scholar 

  98. Ding L, Getz G, Wheeler DA, Mardis ER, McLellan MD, Cibulskis K, Sougnez C, Greulich H, Muzny DM, Morgan MB, Fulton L, Fulton RS, Zhang Q, Wendl MC, Lawrence MS, Larson DE, Chen K, Dooling DJ, Sabo A, Hawes AC, Shen H, Jhangiani SN, Lewis LR, Hall O, Zhu Y, Mathew T, Ren Y, Yao J, Scherer SE, Clerc K, Metcalf GA, Ng B, Milosavljevic A, Gonzalez-Garay ML, Osborne JR, Meyer R, Shi X, Tang Y, Koboldt DC, Lin L, Abbott R, Miner TL, Pohl C, Fewell G, Haipek C, Schmidt H, Dunford-Shore BH, Kraja A, Crosby SD, Sawyer CS, Vickery T, Sander S, Robinson J, Winckler W, Baldwin J, Chirieac LR, Dutt A, Fennell T, Hanna M, Johnson BE, Onofrio RC, Thomas RK, Tonon G, Weir BA, Zhao X, Ziaugra L, Zody MC, Giordano T, Orringer MB, Roth JA, Spitz MR, Wistuba II, Ozenberger B, Good PJ, Chang AC, Beer DG, Watson MA, Ladanyi M, Broderick S, Yoshizawa A, Travis WD, Pao W, Province MA, Weinstock GM, Varmus HE, Gabriel SB, Lander ES, Gibbs RA, Meyerson M, Wilson RK (2008) Somatic mutations affect key pathways in lung adenocarcinoma. Nature 455:1069–1075

    CAS  Google Scholar 

  99. Candido J, Hagemann T (2013) Cancer-related inflammation. J Clin Immunol 33(Suppl 1):S79–S84

    Google Scholar 

  100. Zhang QW, Liu L, Gong CY, Shi HS, Zeng YH, Wang XZ, Zhao YW, Wei YQ (2012) Prognostic significance of tumor-associated macrophages in solid tumor: a meta-analysis of the literature. PLoS One 7:e50946

    CAS  Google Scholar 

  101. Tazzyman S, Niaz H, Murdoch C (2013) Neutrophil-mediated tumorangiogenesis: subversion of immune responses to promote tumorgrowth. Semin Cancer Biol 23:149–158

    CAS  Google Scholar 

  102. Coffelt SB, Lewis CE, Naldini L, Brown JM, Ferrara N, De Palma M (2010) Elusive identities and overlapping phenotypes of proangiogenic myeloid cells in tumors. Am J Pathol 176:1564–1576

    Google Scholar 

  103. DeNardo DG, Andreu P, Coussens LM (2010) Interactions between lymphocytes and myeloid cells regulate pro- versus anti-tumor immunity. Cancer Metastasis Rev 29:309–316

    Google Scholar 

  104. Trinchieri G (2012) Cancer and inflammation: an old intuition with rapidly evolving new concepts. Annu Rev Immunol 30:677–706

    CAS  Google Scholar 

  105. Tian T, Olson S, Whitacre JM, Harding A (2011) The origins of cancer robustness and evolvability. Integr Biol (Camb) 3:17–30

    CAS  Google Scholar 

  106. Chen DS, Mellman I (2013) Oncology meets immunology: the cancer-immunity cycle. Immunity 39:1–10

    Google Scholar 

  107. Vajdic CM, van Leeuwen MT (2009) Cancer incidence and risk factors after solid organ transplantation. Int J Cancer 125:1747–1754

    CAS  Google Scholar 

  108. Delvenne P, Renoux VM, Arafa M, Trimeche M, Christophe J, Kridelka F, Piérard GE (2012) Virus-induced cancers: interplay between genetics and environment. Rev Med Liege 67:381–389

    CAS  Google Scholar 

  109. Bindea G, Mlecnik B, Fridman WH, Pagès F, Galon J (2010) Natural immunity to cancer in humans. Curr Opin Immunol 22:215–222

    CAS  Google Scholar 

  110. Ferrone C, Dranoff G (2010) Dual roles for immunity in gastrointestinal cancers. J Clin Oncol 28:4045–4051

    CAS  Google Scholar 

  111. Nelson BH (2008) The impact of T-cell immunity on ovarian cancer outcomes. Immunol Rev 222:101–116

    CAS  Google Scholar 

  112. Pagès F, Galon J, Dieu-Nosjean MC, Tartour E, Sautès-Fridman C, Fridman WH (2010) Immune infiltration in human tumors: a prognostic factor that should not be ignored. Oncogene 29:1093–1102

    Google Scholar 

  113. Strauss DC, Thomas JM (2010) Transmission of donor melanoma by organ transplantation. Lancet Oncol 11:790–796

    Google Scholar 

  114. Teng MW, Swann JB, Koebel CM, Schreiber RD, Smyth MJ (2008) Immune-mediated dormancy: an equilibrium with cancer. J Leukoc Biol 84:988–993

    CAS  Google Scholar 

  115. Mougiakakos D, Choudhury A, Lladser A, Kiessling R, Johansson CC (2010) Regulatory T cells in cancer. Adv Cancer Res 107:57–117

    CAS  Google Scholar 

  116. Warburg O (1956) On the origin of cancer cells. Biochem Z 123: 309–14

    CAS  Google Scholar 

  117. Pedersen PL (1978) Tumor mitochondria and the bioenergetics of cancer cells. Prog Exp Tumor Res 22:190–274

    CAS  Google Scholar 

  118. Heiden MG, Cantley LC, Thompson CB (2009): Understanding the Warburg effect: the metabolic requirements of cell proliferation. Science 324:1029–1033

    Google Scholar 

  119. Feron O (2009) Pyruvate into lactate and back: from the Warburg effect to symbiotic energy fuel exchange in cancer cells. Radiother Oncol 92:329–333

    CAS  Google Scholar 

  120. Hardee ME, Dewhirst MW, Agarwal N, Sorg BS (2009) Novel imaging provides new insights into mechanisms of oxygen transport in tumors. Curr Mol Med 9:435–441

    CAS  Google Scholar 

  121. Medina MA. Targeting the metabolism of cancer cells. A foreword. Curr Pharm Design, in press

    Google Scholar 

  122. Ruiz-Pérez MV, Sánchez-Jiménez F, Alonso FJ, Segura JA, Márquez J, Medina MA. Glutamine, glucose and other fuels for cancer. Curr Pharm Design, in press

    Google Scholar 

  123. Jones RG, Thompson CB (2009) Tumor suppressors and cell metabolism: a recipe for cancer growth. Genes Dev 23:537–548

    CAS  Google Scholar 

  124. Semenza GL (2010) HIF-1: upstream and downstream of cancer metabolism. Curr Opin Genet Dev 20:51–56

    CAS  Google Scholar 

  125. Semenza GL (2010) Defining the role of hypoxia-inducible factor 1 in cancer biology and therapeutics. Oncogene 29:625–634

    CAS  Google Scholar 

  126. Yen KE, Bittinger MA, Su SM, Fantin VR (2010) Cancer-associated IDH mutations: biomarker and therapeutic opportunities. Oncogene 29:6409–6417

    CAS  Google Scholar 

  127. Wu W, Zhao S (2013) Metabolic changes in cancer: beyond the Warburg effect. Acta Biochim Biophys 45:18–26

    CAS  Google Scholar 

  128. Kareva I, Hahnfeldt P (2013) The emerging “hallmarks” of metabolic reprogramming and immune evasion: distinct or linked? Cancer Res 73:2737–42

    CAS  Google Scholar 

  129. Ladomery M (2013) Aberrant alternative splicing is another hallmark of cancer. Int J Cell Biol 2013:463786

    Google Scholar 

  130. Gutschner T, Diederichs S (2012) The hallmarks of cancer: a long non-coding RNA point of view. RNA Biol 9:703–19

    CAS  Google Scholar 

  131. Hainaut P, Plymoth A (2013) Targeting the hallmarks of cancer: towards a rational approach to next-generation cancer therapy. Curr Opin Oncol 25:50–51

    Google Scholar 

  132. Kamb A, Wee S, Lengauer C (2007) Why is cancer drug discovery so difficult? Nat Rev Drug Discov 6:115

    CAS  Google Scholar 

  133. Stegmeier F, Warmuth M, Sellers WR, Dorsch M (2010) Targeted cancer therapies in the twenty-first century: lessons from imatinib Clin Pharmacol Ther 87:543–552

    CAS  Google Scholar 

  134. Balcer-Kubiczek EK (2012) Apoptosis in radiation therapy: a double-edged sword. Exp Oncol 34:277–285

    CAS  Google Scholar 

  135. Butler AJ, Rees T, Beesley P, Bax NJ (2010) Marine biodiversity in the Australian region. PLoS One 5(8):e11831

    Google Scholar 

  136. Fautin D, Dalton P, Incze LS, Leong JA, Pautzke C, Rosenberg A, Sandifer P, Sedberry G, Tunnell JW Jr, Abbott I, Brainard RE, Brodeur M, Eldredge LG, Feldman M, Moretzsohn F, Vroom PS, Wainstein M, Wolff N (2010) An overview of marine biodiversity in United States waters. PLoS One 5(8):e11914

    Google Scholar 

  137. Miloslavich P, Díaz JM, Klein E, Alvarado JJ, Díaz C, Gobin J, Escobar-Briones E, Cruz-Motta JJ, Weil E, Cortés J, Bastidas AC, Robertson R, Zapata F, Martín A, Castillo J, Kazandjian A, Ortiz M (2010) Marine biodiversity in the Caribbean: regional estimates and distribution patterns. PLoS One 5(8):e11916

    Google Scholar 

  138. Davidson, BS (1995) New dimensions in natural products research: cultured marine microorganisms. Curr Opin Biotechnol 6:284–291

    CAS  Google Scholar 

  139. Newman DJ, Cragg GM (2012) Natural products as sources of new drugs over the 30 years from 1981 to 2010. J Nat Prod 75:311–335

    CAS  Google Scholar 

  140. Nastrucci C, Cesario A, Russo P (2012) Anticancer drug discovery from the marine environment. Recent Pat Anticancer Drug Discov 7:218–232

    CAS  Google Scholar 

  141. Blunt JW, Copp BR, Munro MH, Northcote PT, Prinsep MR (2004) Marine natural products. Nat Prod Rep 21:1–49

    CAS  Google Scholar 

  142. Bhatnagar I, Kim SK (2010) Immense essence of excellence: marine microbial bioactive compounds. Mar Drugs 8:2673–2701

    CAS  Google Scholar 

  143. Bhatnagar I, Kim SK (2010) Marine antitumor drugs: status, shortfalls and strategies. Mar Drugs 8:2702–2720

    CAS  Google Scholar 

  144. García-Caballero M, Marí-Beffa M, Cañedo L, Medina MÁ, Quesada AR (2013) Toluquinol, a marine fungus metabolite, is a new angiosuppresor that interferes with the Akt pathway. Biochem Pharmacol 85:1727–1740

    Google Scholar 

  145. Cragg GM, Newman DJ (2001) Medicinals for the millennia: the historical record. AnnN Y Acad Sci 953:3–25

    CAS  Google Scholar 

  146. Bérdy J (2005) Bioactive microbial metabolites. J Antibiot (Tokyo) 58:1–26

    Google Scholar 

  147. Bhadury P, Mohammad BT, Wright PC (2006) The current status of natural products from marine fungi and their potential as anti-infective agents. J Ind Microbiol Biotechnol 33:325–337

    CAS  Google Scholar 

  148. Arnaoutova I, Kleinman HK (2010) In vitro angiogenesis: endothelial cell tube formation on gelled basement membrane extract. Nat Protoc 5:628–635

    CAS  Google Scholar 

  149. Muñoz-Chápuli R, Quesada AR, Medina MA (2004) Angiogenesis and signal transduction in endothelial cells. Cell Mol Life Sci 61:2224–2243

    Google Scholar 

  150. Cheng JQ, Lindsley CW, Cheng GZ, Yang H, Nicosia SV (2005) The Akt/PKB pathway: molecular target for cancer drug discovery. Oncogene 24:7482–7492

    CAS  Google Scholar 

  151. Jiang BH, Liu LZ (2008) AKT signaling in regulating angiogenesis. Curr Cancer Drug Targets 8:19–26

    CAS  Google Scholar 

  152. Lawson ND, Weinstein BM (2002) In vivo imaging of embryonic vascular development using transgenic zebrafish. Dev Biol 248:307–318

    CAS  Google Scholar 

  153. Bayliss PE, Bellavance KL, Whitehead GG, Abrams JM, Aegerter S, Robbins HS, Cowan DB, Keating MT, O’Reilly T, Wood JM, Roberts TM, Chan J (2006) Chemical modulation of receptor signaling inhibits regenerative angiogenesis in adult zebrafish. Nat Chem Biol 2:265–273

    CAS  Google Scholar 

  154. Huang CC, Lawson ND, Weinstein BM, Johnson SL (2003) reg6 is required for branching morphogenesis during blood vessel regeneration in zebrafish caudal fins. Dev Biol 264:263–274

    CAS  Google Scholar 

  155. Rodríguez-Nieto S, González-Iriarte M, Carmona R, Muñoz-Chápuli R, Medina MA, Quesada AR (2002) Antiangiogenic activity of aeroplysinin-1, a brominated compound isolated from a marine sponge. FASEB J 16:261–263

    Google Scholar 

  156. García-Caballero M, Marí-Beffa M, Medina MA, Quesada AR (2011) Dimethylfumarate inhibits angiogenesis in vitro and in vivo: a possible role for its antipsoriatic effect? J Invest Dermatol 131:1347–1355

    Google Scholar 

  157. López-Jiménez A, García-Caballero M, Medina MA, Quesada AR (2013) Anti-angiogenic properties of carnosol and carnosic acid, two major dietary compounds from rosemary. Eur J Nutr 52:85–95

    Google Scholar 

  158. Martínez-Poveda B, Muñoz-Chápuli R, Rodríguez-Nieto S, Quintela JM, Fernández A, Medina MA, Quesada AR (2007) IB05204, a dichloropyridodithienotriazine, inhibits angiogenesis in vitro and in vivo. Mol Cancer Ther 6:2675–2685

    Google Scholar 

  159. Yeh JC, Cindrova-Davies T, Belleri M, Morbidelli L, Miller N, Cho CW, Chan K, Wang YT, Luo GA, Ziche M, Presta M, Charnock-Jones DS, Fan TP (2011) The natural compound n-butylidenephthalide derived from the volatile oil of Radix Angelica sinensis inhibits angiogenesis in vitro and in vivo. Angiogenesis 14:187–197

    CAS  Google Scholar 

  160. Whibley CE, McPhail KL, Keyzers RA, Maritz MF, Leaner VD, Birrer MJ, Davies-Coleman MT, Hendricks DT (2007) Reactive oxygen species mediated apoptosis of esophageal cancer cells induced by marine triprenyl toluquinones and toluhydroquinones. Mol Cancer Ther 6:2535–2543

    CAS  Google Scholar 

  161. Simon HU, Haj-Yehia A, Levi-Schaffer F (2000) Role of reactive oxygen species (ROS) in apoptosis induction. Apoptosis 5:415–418

    CAS  Google Scholar 

  162. Murata M, Tsujikawa M, Kawanishi S (1999) Oxidative DNA damage by minor metabolites of toluene may lead to carcinogenesis and reproductive dysfunction. Biochem Biophys Res Commun 261:478–483

    CAS  Google Scholar 

Download references

Acknowledgments

Melissa García has been a recipient of a predoctoral FPU grant from the Spanish Ministry of Science and Innovation and her work is at present funded by “III Plan propio de Investigación” (University of Málaga). Our work is supported by grants PIE P08-CTS-3759 and P12-CTS-1507 (Andalusian Government and FEDER) The “CIBER de Enfermedades Raras” is an initiative from the ISCIII (Spain).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Melissa García-Caballero .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

García-Caballero, M., Medina, M., Quesada, A. (2015). Toluquinol, A Marine Fungus Metabolite, Inhibits Some of the Hallmarks of Cancer. In: Kim, SK. (eds) Handbook of Anticancer Drugs from Marine Origin. Springer, Cham. https://doi.org/10.1007/978-3-319-07145-9_14

Download citation

Publish with us

Policies and ethics