Skip to main content

Natural Products with Anticancer Activity from Marine Fungi

  • Chapter
  • First Online:
Book cover Handbook of Anticancer Drugs from Marine Origin

Abstract

Cancer is one of the major diseases, which require the improved drugs with fewer side effects. Until now, several marine natural products have been accessed for the anticancer property and few of them are in clinical trials too. Marine fungi are taxonomically diverse, largely productive, biologically active, and chemically unique offering a great scope for discovery of new anticancer drugs. The natural products isolated from the marine fungi are possibly inhibiting the processes such as inflammation, cell differentiation and survival, and metastasis of various signal transduction pathways and their by reducing the risk of cancer. In this chapter, we have discussed about the anticancer, anti-inflammatory and cytotoxic activities of marine derived fungi.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Heron M (2007) Deaths: Leading causes for 2004. Natl Vital. Stat Rep 56:1–96

    Google Scholar 

  2. Heron M (2009) Deaths: Leading causes for 2005. Natl Vital. Stat Rep 58:1–97

    Google Scholar 

  3. David V, Jaime RA, Cristina T et al. (2010) Studies on quinones. Part 46. Synthesis and in vitro antitumor evaluation of aminopyrimidoisoquinolinequinones. Eur J Med Chem 45:5234–5242

    Article  Google Scholar 

  4. Thomas TRA, Kavlekar DP, LokaBharathi PA (2010) Marine drugs from sponge-microbe association—a review. Mar Drugs 8:1417–1468

    Article  CAS  Google Scholar 

  5. Wang L, Li D, Xu S et al. (2012) The conversion of oridonin to spirolactone-type or enmein-type diterpenoid, synthesis and biological. evaluation of ent-6,7-seco-oridonin derivatives as novel potential anticancer agents. Eur J Med Chem 52:242–250

    Article  CAS  Google Scholar 

  6. Schwartsmann G, Da Rocha AB, Mattei J, Lopes R (2003) Marine-derived anticancer agents in clinical trials. Expert Opin Inv Drug 12:1367–1383

    Article  CAS  Google Scholar 

  7. D’Incalci M, Simone M, Tavecchio M, Damia G, Garbi A, Erba E (2004) New drugs from the sea. J Chemother 16:86–89

    Article  Google Scholar 

  8. O’Hanlon LH (2006) Scientists are searching the seas for cancer drugs. J Natl Cancer Inst 98:662–663

    Article  Google Scholar 

  9. Banerjee S, Wang Z, Mohammad M, Sarkar FH (2008) Mohammad R.M. Efficacy of selected natural products as therapeutic agents against cancer. J Nat Prod 71:492–496

    Article  CAS  Google Scholar 

  10. Faulkner DJ (2000a) Highlights of marine natural products chemistry (1972–1999). Nat Prod Rep 17:1–6

    Google Scholar 

  11. Faulkner DJ (2000b) Marine pharmacology. Antonie van Leeuwenhoek 77:135–145

    Google Scholar 

  12. Bhadury P, Wright PC (2004) Exploitation of marine algae: biogenic compounds for potential antifouling applications. Planta 219:561–578

    Article  CAS  Google Scholar 

  13. Donia M, Hamann MT (2003) Marine natural products and their potential applications as anti-infective agents. Lancet Infect Dis 3:338–348

    Article  CAS  Google Scholar 

  14. Mayer AM, Hamann MT (2004) Marine pharmacology in 2000: marine compounds with antibacterial, anticoagulant, antifungal, anti-inflammatory, antimalarial, antiplatelet, antituberculosis, and antiviral activities; affecting the cardiovascular, immune, and nervous systems and other miscellaneous mechanisms of action. Mar Biotechnol 6:37–52

    Article  CAS  Google Scholar 

  15. Mehta AS, Gu B, Conyers B et al. (2004) alpha-Galactosylceramide and novel synthetic glycolipids directly induce the innate host defense pathway and have direct activity against hepatitis B and C viruses. Antimicrob Agents Chemother 48:2085–2090

    Article  CAS  Google Scholar 

  16. Rowley DC, Hansen MS, Rhodes D et al. (2002) Thalassiolins A–C: new marine-derived inhibitors of HIV cDNA integrase. Bioorg Med Chem 10:3619–3625

    Article  CAS  Google Scholar 

  17. Bhadury P, Mohammad BT, Wright PC (2006) The current status of natural roducts from marine fungi and their potential as anti-infective agents. J Ind Microbiol Biotechnol 33: 325–337

    Article  CAS  Google Scholar 

  18. Fenical W, Jensen PR (1993) Marine microorganisms: a new biomedical resource. In: Attaway DH, Zaborsky OR (eds) Marine biotechnology, vol 1. Plenum Press, New York, pp 419–457

    Google Scholar 

  19. Gallo ML, Seldes AM, Cabrera GM (2004) Antibiotic longchain and a, b-unsaturated aldehydes from the culture of the marine fungus Cladosporium sp. Biochem Syst Ecol 32:545–551

    Article  CAS  Google Scholar 

  20. Abdel-Lateff A, Klemke C, Konig GM, Wright AD (2003b) Two new xanthone derivatives from the algicolous marine fungus Wardomyces anomalus. J Nat Prod 66:706–708

    Google Scholar 

  21. Daferner M, Anke T, Sterner O (2002) Zopfiellamides A and B, antimicrobial pyrrolidinone derivatives from the marine fungus Zopfiella latipes. Tetrahedron 58:7781–7784

    Article  CAS  Google Scholar 

  22. Davidson BS (1995) New dimensions in natural products research: cultured marine microorganisms. Curr Opin Biotechnol 6:284–291

    Article  CAS  Google Scholar 

  23. Fenical W (1997) New pharmaceuticals from marine organisms. Trends Biotechnol 15:339–341

    Article  CAS  Google Scholar 

  24. Gautschi JT, Amagata T, Amagata A, Valeriote FA, Mooberry SL, Crews P (2004) Expanding the strategies in natural product studies of marine-derived fungi: a chemical investigation of Penicillium obtained from deep water sediment. J Nat Prod 67:362–367

    Article  CAS  Google Scholar 

  25. Isaka M, Suyarnsestakorn C, Tanticharoen M, Kongsaeree P, Thebtaranonth Y (2002) Aigialomycins A–E, new resorcylic macrolides from the marine mangrove fungus Aigialus parvus. J Org Chem 67:1561–1566

    Article  CAS  Google Scholar 

  26. Li X, Choi HD, Kang JS, Lee CO, Son BW (2003) New polyoxygenated farnesylcyclohexenones, deacetoxyyanuthone A and its hydro derivative from the marine-derived fungus Penicillium sp. J Nat Prod 66:1499–1500

    Article  CAS  Google Scholar 

  27. Bugni TS, Ireland CM (2004) Marine derived fungi: a chemically and biologically diverse group of microorganisms. Nat Prod Rep 21:143–163

    Article  CAS  Google Scholar 

  28. Lee M, Murphy G (2004) Matrix metalloproteinases at a glance. J Cell Sci 117:4015–4016

    Article  CAS  Google Scholar 

  29. Gill S, Parks W (2008) Metalloproteinases and their inhibitors: regulators of wound healing. Int J Biochem Cell Biol 40:1334–1347

    Article  CAS  Google Scholar 

  30. Egeblad M, Werb Z (2002) New functions for the matrix metalloproteinase in cancer progression. Nat Rev Cancer 2:161–174

    Article  CAS  Google Scholar 

  31. Overall CM, Lopez-Otin C (2002) Strategies for MMP inhibition in cancer: innovations for the posttrial era. Nat Rev Cancer 2:657–672

    Article  CAS  Google Scholar 

  32. Zhang C, Kim SK (2012) Antimetastasis effect of anthraquinones from marine fungus, Microsporum sp.. In: Kim SK (ed) Advances in food and nutrition research, vol 65. Academic, Waltham, pp 415–421

    Google Scholar 

  33. Champoux JJ (2001) DNA topoisomerases: structure, function, and mechanism. Ann Rev Biochem 70:369–413

    Article  CAS  Google Scholar 

  34. Wang JC (1996) DNA topoisomerases. Annu Rev Biochem 65:635–92

    Article  CAS  Google Scholar 

  35. Wang JC (1998) Moving one DNA double helix through another by a type II DNA topoisomerase: the story of a simple molecular machine. Q Rev Biophys 31:107–44

    Article  CAS  Google Scholar 

  36. Pommier Y, Pourquier P, Fan Y, Strumberg D (1998) Mechanism of action of eukaryotic DNA topoisomerase I and drugs targeted to the enzymes. Biochem Biophys Acta 1400:83–105

    CAS  Google Scholar 

  37. Chen AY, Liu LF (1994) DNA topoisomerases: essential enzymes and lethal targets. Annu Rev Pharmacol Toxicol 34:191–218

    Article  CAS  Google Scholar 

  38. Bhatnagar I, Kim SK (2010) Marine Antitumor Drugs: Status, Shortfalls and Strategies. Mar Drugs 8:2702–2720

    Article  CAS  Google Scholar 

  39. Yanagihara M, Sasaki-Takahashi N, Sugahara T et al. (2005) Leptosins isolated from marine fungus Leptoshaeria species inhibit DNA topoisomerases I and/or II and induce apoptosis by inactivation of Akt/protein kinase B. Cancer Sci 96:816–824

    Article  CAS  Google Scholar 

  40. Hong R (2011) Secalonic acid D as a novel DNA topoisomerase I inhibitor from marine lichen-derived fungus Gliocladium sp. T31. Pharm Biol 49(8):796–799

    Article  CAS  Google Scholar 

  41. Koivunen J, Aaltonena V, Peltonen J (2006) Protein kinase C (PKC) family in cancer progression. Cancer Letters 235:1–10

    Article  CAS  Google Scholar 

  42. Gorin MA, Pan Q (2009) Protein kinase Cε: an oncogene and emerging tumor biomarker. Mol Cancer 8:9. doi:10.1186/1476-4598-8-9

    Article  Google Scholar 

  43. Abdel-Lateff A (2008) Chaetominedione, a new tyrosine kinase inhibitor isolated from the algicolous marine fungus Chaetomium sp. Tetrahedron Letters 49:6398–6400

    Article  CAS  Google Scholar 

  44. Holler U, Konig G, Wright AD (1999) A new tyrosine kinase inhibitor from a marine isolate of ulocladium botrytis and new metabolites from the marine fungi Asteromyces cruciatus and Varicosporina ramulosa. Eur J Org Chem 11:2949–2955

    Article  Google Scholar 

  45. Brauers G, Edrada RA, Ebel R et al. (2000) Anthraquinones and betaenone derivatives from the sponge associated fungus Microsphaeropsis species: Novel inhibitors of protein kinase. J Nat Prod 63:739–745

    Article  CAS  Google Scholar 

  46. Kang L, Cai M, Yu C et al. (2011) Improved production of the anticancer compound 1403C by glucose pulse feeding of marine Halorosellinia sp. (No. 1403) in submerged culture. Bioresource Technology 102:10750–10753

    Article  CAS  Google Scholar 

  47. Reed JC (2002) Apoptosis-based therapies. Nat Rev Drug Discov 1:111–121

    Article  CAS  Google Scholar 

  48. Sellers WR, Fisher DE (1999) Apoptosis and cancer drug targeting. J Clin Invest 104:1655–1661

    Article  CAS  Google Scholar 

  49. Stenner-Liewen F, Reed JC (2003) Apoptosis and cancer: basic mechanisms and therapeutic opportunities in the postgenomic era. Cancer Res 63:263–628

    CAS  Google Scholar 

  50. Nagle DG, Zhou Y-D, Mora FD et al. (2004) Mechanism targeted discovery of antitumor marine natural products. Curr Med Chem 11(13):1725–1756

    Article  CAS  Google Scholar 

  51. Zhang J.-Y, Tao L.-Y, Liang Y.-J et al. (2010) Anthracenedione derivatives as anticancer agents isolated from secondary metabolites of the mangrove endophytic fungi. Mar Drugs 8:1469–1481

    Article  CAS  Google Scholar 

  52. Asami Y, Jang JH, Soung NK et al. (2012) Protuboxepin A, a marine fungal metabolite, inducing metaphase arrest and chromosomal misalignment in tumor cells. Bioorg Med Chem 20:3799–3806

    Article  CAS  Google Scholar 

  53. Namikoshi M, Kobayashi H, Yoshimoto T et al. (2000) Isolation and characterization of bioactive metabolites from marine-derived filamentous fungi collected from tropical and sub-tropical coral reefs Chem Pharm Bull 48:1452–1457

    Article  CAS  Google Scholar 

  54. Zhang Z, Miao L, Lv C et al. (2013) Wentilactone B induces G2/M phase arrest and apoptosis via the Ras/Raf/MAPK signaling pathway in human hepatoma SMMC-7721 cells. Cell Death Dis 4:e657

    Article  CAS  Google Scholar 

  55. Wang J, Zhao B, Zhang W et al. (2010) Mycoepoxydiene, a fungal polyketide, induces cell cycle arrest at the G2/M phase and apoptosis in HeLa cells. Bioorg Med Chem Lett 20: 7054–7058

    Article  CAS  Google Scholar 

  56. Tsukamoto S, Hirota H, Imachi M et al. (2005) Himeic acid A: a new ubiquitin-activating enzyme inhibitor isolated from a marine-derived fungus, Aspergillus sp. Bioorg Med Chem Lett 15:191–194

    Article  CAS  Google Scholar 

  57. McDonald LA, Abbanat DR, Barbieri LR et al. (1999) Spiroxins, DNA cleaving antitumor antibiotics from a marine-derived fungus. Tetrahedron Lett 40:2489–2492

    Article  CAS  Google Scholar 

  58. Tang B, He W-L, Zheng C et al. (2012) Marine fungal metabolite 1386A alters the microRNA profile in MCF-7 breast cancer cells. Mol Med Rep 5:610–618

    CAS  Google Scholar 

  59. Wijesekara I, Zhang C, Taa QV et al. (2014) Physcion from marine-derived fungus Microsporum sp. induces apoptosis in human cervical carcinoma HeLa cells. Microbiol Res. 169:255–261

    Google Scholar 

  60. Balkwill F, Mantovani A (2001) Inflammation and cancer: back to Virchow? Lancet 357:539–545

    Article  CAS  Google Scholar 

  61. Philip M, Rowley DA, Schreiber H (2004) Inflammation as a tumor promoter in cancer induction. Semin Cancer Biol 14:433–439

    Article  CAS  Google Scholar 

  62. Coussens LM, Werb Z (2002) Inflammation and cancer. Nature 420:860–867

    Article  CAS  Google Scholar 

  63. Okada F (2002) Inflammation and free radicals in tumor development and progression. Redox Rep 7:357–368

    Article  CAS  Google Scholar 

  64. Yang C.-R, Hsieh S.-L, Ho F.-M et al. (2005) Decoy receptor 3 increases monocyte adhesion to endothelial cells via NF-nB-dependent up-regulation of intercellular adhesion molecule-1, VCAM-1, and IL-8 expression. J Immunol 174:1647–1656

    Article  CAS  Google Scholar 

  65. Dou H, Song Y, Liu X et al. (2011) Chaetoglobosin fex from the marine-derived endophytic fungus inhibits induction of inflammatory mediators via toll-like receptor 4 signaling in macrophages. Biol Pharm Bull 34(12):1864–1873

    Article  CAS  Google Scholar 

  66. Song Y, Dou H, Gong W et al. (2013) Bis-N-norgliovictin, a small-molecule compound from marine fungus, inhibits LPS-induced inflammation in macrophages and improves survival in sepsis. Eur J Pharmacol 705:49–60

    Article  CAS  Google Scholar 

  67. Lee DS, Jeong GS, Li B et al. (2011) Asperlin from the marine-derived fungus Aspergillus sp. SF-5044 exerts anti-inflammatory effects through heme oxygenase-1 expression in murine macrophages. J Pharmacol Sci 116:283–295

    Article  CAS  Google Scholar 

  68. Neumann K, Kehraus S, Gutschow M et al. (2009) Cytotoxic and HLE-inhibitory tetramic acid derivatives from marine-derived fungi. Nat Prod Comms 4:347–354

    CAS  Google Scholar 

  69. Pontius A, Krick A, Kehraus S et al. (2008) Antiprotozoal activities of heterocyclic-substituted xanthones from the marine-derived fungus Chaetomium sp. J Nat Prod 71:1579–1584

    Article  CAS  Google Scholar 

  70. Krick A, Kehraus S, Gerhauser C et al. (2007) Potential cancer chemopreventive in vitro activities of monomeric xanthone derivatives from novel heterodimeric chromanone with cancer chemopreventive potential. Chem Eur J 14:9860–9863

    Google Scholar 

  71. Numata A, Amagata T, Minoura K, Ito T (1997) T. Gymnastatins, Novel cytotoxic metabolites produced by a fungal strain from a sponge. Tetrahedron Lett 38:5675–5678

    Article  CAS  Google Scholar 

  72. Amagata T, Doi M, Ohta T et al. (1998a) Absolute stereostructures of novel cytotoxic metabolites, Gymnastatins A-E, from a Gymnascella species separated from a Halichondria sponge. J Chem Soc Perkin Trans 1:3585–3599

    Google Scholar 

  73. Amagata T, Minoura K, Numata A (1998b) Gymnasterones, novel cytotoxic metabolites produced by a fungal strain from a sponge. Tetrahedron Lett 39:3773–3774

    Google Scholar 

  74. Amagata T, Doi M, Tohgo M (1999) Dankasterone, a new class of cytotoxic steroid produced by a Gymnascella species from a marine sponge. Chem Commun 14:1321–1322

    Google Scholar 

  75. Varoglu M, Crews P J. (2000) Biosynthetically diverse compounds from a saltwater culture of sponge-derived Aspergillus niger. J Nat Prod 63:41–43

    Article  CAS  Google Scholar 

  76. Usami Y, Ikura T, Amagata T, Numata A (2000) First total syntheses and configurational assignments of cytotoxic trichodenones A-C. Tetrahedron: Asymmetry 11:3711–3725

    Article  CAS  Google Scholar 

  77. Takahashi C, Numata A, Ito Y et al. (1994a) Leptosins, antitumour metabolites of a fungus isolated from a marine alga. J Chem Soc Perkin Trans 1:1859–1864

    Google Scholar 

  78. Takahashi C, Numata A, Matsumura E et al. (1994b) Leptosins I and J, cytotoxic substances produced by a Leptosphaeria species physico-chemical properties and structures. J Antibiot 47:1242–1249

    Google Scholar 

  79. Takahashi C, Takai Y, Kimura Y, et al. (1995a) Cytotoxic metabolitesfrom fungal adherent of a marine alga. Phytochemistry 38:155–158

    Google Scholar 

  80. Takahashi C, Minoura K, Yamada K et al. (1995b) Po-tent cytotoxic from a Leptosphaeria species structure de-termination and conformational analysis. Tetrahedron 51:3483–3498

    Google Scholar 

  81. Yamada T, Iwamoto C, Yamagaki N et al. (2002) Leptosins M-N, cytotoxic metabolites from a leptospaeria species separated from a marine alga. structure determination and biological activities. Tetrahedron 58:479–487

    Article  CAS  Google Scholar 

  82. Amagata T, Minoura K, Numata A, (1998) Cytotoxic metabolites produced by a fungal strain from a Sargassum alga. J Antibiot 51:432–434

    Article  CAS  Google Scholar 

  83. Belofsky GN, Jensen PR, Renner MK, et al. (1998) New cytotoxic sesquiterpenoid nitrobenzoyl esters from a marine isolate of the fungus Aspergillus versicolor. Tetrahedron, 54:1715–1724

    Article  CAS  Google Scholar 

  84. Numata A, Takahashi C, Ito Y et al. (1993) Communesins, cytotoxic metabolites of a fungus isolated from a marine alga. Tetrahedron Lett 34:2355–2358

    Article  CAS  Google Scholar 

  85. Iwamoto C, Yamada T, Ito Y et al. (2001) Cytotoxic cytochalasans from a Penicillium species separated from a marine alga. Tetrahedron 57:2997–3004

    Article  CAS  Google Scholar 

  86. Numata A, Takahashi C, Ito Y et al. (1996) Penochalasins, a novel class of cytotoxic cytochalasans from a Penicillium species separated from a marine alga: structure determination and solution conformation. J Chem Soc Perkin Trans 1:239–245

    Article  Google Scholar 

  87. Iwamoto C, Minoura K, Hagishita S et al. (1998) Penostatins f–I, novel cytotoxic metabolites from a Penicillium species separated from an Enteromorpha marine alga. J Chem Soc Perkin Trans 1:449–456

    Article  Google Scholar 

  88. Iwamoto C, Minoura K, Oka T et al. (1999) Absolute stereo structures of novel cytotoxic metabolites, penostatins A-E, from a Penicillium species separated from an Enteromorpha alga. Tetrahedron 55:14353–14368

    Article  CAS  Google Scholar 

  89. Takahashi C, Numata A, Yamada T et al. (1996) Penostatins, novel cytotoxic metabolites from a Penicillium species separated from a green alga. Tetrahedron Lett 37:655–658

    Article  CAS  Google Scholar 

  90. Son BW, Jensen PR, Kauffman CA et al. (1999) New cytotoxic epidithiodioxopiperazines related to verticillin A from a marine isolate of the fungus Penicillium. Nat Prod Lett 13:213–222

    Article  Google Scholar 

  91. Renner MK, Jensen PR, Fenical. W (1998) neomangicols: structures and absolute stercochemistries of unpreccedented halogenated sesterterpenes from a marine fungus of the genus Fusarium. J Org Chem 63:8346–8354

    Article  CAS  Google Scholar 

  92. Renner MK, Jensen PR, Fenical W (2000) Mangicols: structures and biosynthesis of a new class of sesterterpene polyols from a marine fungus of the genus Fusarium. J Org Chem 65:4843–4852

    Article  CAS  Google Scholar 

  93. Lu Z, Zhu H, Fu P, Wang Y et al. (2010) Cytotoxic polyphenols from the marine-derived fungus Penicillium expansum. J Nat Prod 73:911–914

    Article  CAS  Google Scholar 

  94. Chen H, Zhu X, Zhong L.-L et al. (2012) Synthesis and antitumor activities of derivatives of the marine mangrove fungal metabolite deoxybostrycin. Mar Drugs 10:2715–2728

    Article  CAS  Google Scholar 

  95. Namikoshi M, Akano K, Meguro S et al. (2001) A new macrocyclic trichothecene, 12,13-deoxyroridin E, produced by the marine-derived fungus Myrothecium roridum collected in palau. J Nat Prod 64:396–398

    Article  CAS  Google Scholar 

  96. Laurent D, Guella G, Roquebert MF et al. (2000) Cytotoxins, mycotoxins and drugs from a new deuteromycete, Acremonium neocaledoniae, from the southwestern lagoon of New Caledonia. Planta Med 66:63–66

    Article  CAS  Google Scholar 

  97. Toske SG, Jensen PR, Kauffman CA et al. (1998) Aspergillamides A and B: modified cytotoxic tripeptides produced by a marine fungus of the genus Aspergillus. Tetrahedron 54:13459–13466

    Article  CAS  Google Scholar 

  98. Belofsky GN, Jensen PR, Fenical W (1999) Sansalvamide: a new cytotoxic cyclic depsipeptide produced by a marine fungus of the genus Fusarium. Tetrahedron Lett 40:2913–2916

    Article  CAS  Google Scholar 

  99. Cueto M, Jensen PR, Fenical W (2000) N-Methylsansalvamide, a cytotoxic cyclic depsipeptide from a marine fungus of the genus Fusarium. Phytochemistry 55:223–226

    Article  CAS  Google Scholar 

  100. Shigemori H, Wakuri S, Yazawa K et al. (1991) Fellutamide-A and fellutamide-B, cytotoxic peptides from a marine fish-possessing fungus Penicillium fellutanum. Tetrahedron 47:8529–8534

    Article  CAS  Google Scholar 

  101. Muroga Y, Yamada T, Numata A et al. (2010) 11- and 4´-epimers of chaetomugilin A, novel cytostatic metabolites from marine fish-derived fungus Chaetomium globosum. Helvetica Chimica Acta 93:542–549

    Article  CAS  Google Scholar 

  102. Thomas E (2010) Cancer therapy with natural products and medicinal plants. Planta Med 76:1035–1036

    Article  Google Scholar 

  103. Hiort J, Maksimenka K, Reichert M et al. (2004) New natural products from the sponge-derived fungus Aspergillus niger. J Nat Prod 67:1532–1543

    Article  CAS  Google Scholar 

  104. Lee YM, Dang HT, Hong J et al. (2010) A cytotoxic lipopeptide from the sponge-derived fungus Aspergillus versicolor. B Kor Chem Soc 31:205–208

    Article  CAS  Google Scholar 

  105. Yu Z, Lang G, Kajahn I et al. (2008) Scopularides A and B, cyclodepsipeptides from a marine sponge-derived fungus, Scopulariopsis brevicaulis. J Nat Prod 71:1052–1054

    Article  CAS  Google Scholar 

  106. Mohamed IE, Gross H, Pontius A et al. (2009) Epoxyphomalin A and B, prenylated polyketides with potent cytotoxicity from the marine-derived fungus Phoma sp. Org Lett 11:5014–5017

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the High-Tech Research and Development Program of China (2013AA092901).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhiyong Li .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Karuppiah, V., Zhang, F., Li, Z. (2015). Natural Products with Anticancer Activity from Marine Fungi. In: Kim, SK. (eds) Handbook of Anticancer Drugs from Marine Origin. Springer, Cham. https://doi.org/10.1007/978-3-319-07145-9_13

Download citation

Publish with us

Policies and ethics