Skip to main content

Part of the book series: Springer Theses ((Springer Theses))

  • 260 Accesses

Abstract

This chapter describes the acquisition and processing of data from the ATLAS detector.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    In addition, the colour grey indicates “undefined” usually due to insufficient statistics and the colour black is used if the corresponding subsystem is not operational.

  2. 2.

    A cone algorithm uses the energy depositions inside a cone of given size around a pre-defined jet seed to recalculate the jet four momentum. The procedure is repeated iteratively until the jet position has stablized.

  3. 3.

    A luminosity block is a short time interval (typically 1–2 min) during a detector run in which the data-taking conditions (detector and beam conditions) were approximately stable.

  4. 4.

    D3PDs are centrally produced at Tier-1 and Tier-2 computing centers via the computing grid interface.

  5. 5.

    A cache is a lightweight collection of a small number of software packages built on top of an existing release.

  6. 6.

    The inside-out tracking algorithm starts with three hits in the silicon detectors and subsequently includes more hit information at outer radii using a combinatorical Kalman filter. The tracks are extended to the TRT.

  7. 7.

    The back-tracking algorithm uses TRT track segments and extends them to the silicon detectors.

References

  1. ATLAS Collaboration, The ATLAS experiment at the CERN large hadron collider. JINST 3, (2008) S08003

    Google Scholar 

  2. S. Klous, Event Streaming in the Online System, ATL-DAQ-PROC-2010-017, CERN, Geneva, July 2010. https://cdsweb.cern.ch/record/1278184

  3. N. Berger et al., The high-level-trigger steering of the ATLAS experiment. IEEE Trans. Nucl. Sci. 55(1), 165 (2008)

    Google Scholar 

  4. ATLAS Collaboration, Performance of the ATLAS Electron and Photon Trigger in p-p Collisions at \(\sqrt{s}\) = 7 TeV in 2011, ATLAS-CONF-2012-048. CERN, Geneva, May 2012. https://cdsweb.cern.ch/record/1450089/

  5. N. Barlow, Prompt reconstruction of LHC collision data with the ATLAS reconstruction software. J. Phys: Conf. Ser. 331(3), 032004 (2011)

    Google Scholar 

  6. D. Duellmann, in The LCG POOL project: General overview and project structure, eConference C0303241 (2003) MOKT007, 2003, arXiv:physics/0306129 [physics]

  7. R. Brun, F. Rademakers, ROOT: an object oriented data analysis framework. Nucl. Instrum. Meth. A389, 81–86 (1997)

    Article  ADS  Google Scholar 

  8. T. Cornelissen, M. Elsing, S. Fleischmann, W. Liebig, E. Moyse, A. Salzburger, Concepts, Design and Implementation of the ATLAS New Tracking (NEWT), ATL-SOFT-PUB-2007-007, CERN, Geneva, March 2007. https://cds.cern.ch/record/1020106

  9. ATLAS Collaboration, Electron performance measurements with the ATLAS detector using the 2010 LHC proton-proton collision data. Eur. Phys. J. C72, 1909 (2012). arXiv:1110.3174 [hep-ex]

  10. ATLAS Collaboration, Muon Reconstruction Performance, ATLAS-CONF-2010-064, CERN, Geneva, July 2010. https://cds.cern.ch/record/1281339

  11. S. Hassani, L. Chevalier, E. Lançon, J.-F. Laporte, R. Nicolaidou, A. Ouraou, A muon identification and combined reconstruction procedure for the ATLAS detector at the LHC using the (MUONBOY, STACO, MuTag) reconstruction packages. Nucl. Instrum. Meth. A572, 77 (2007)

    Article  ADS  Google Scholar 

  12. W. Lampl, S. Laplace, D. Lelas, P. Loch, H. Ma, S. Menke, S. Rajagopalan, D. Rousseau, S. Snyder, G. Unal, Calorimeter Clustering Algorithms: Description and Performance, ATL-LARG-PUB-2008-002, CERN, Geneva, April 2008. https://cds.cern.ch/record/1099735

  13. M. Cacciari, G. P. Salam, G. Soyez, The anti-k\(_{\rm {T}}\) jet clustering algorithm. J. High Energy Phys. 063(04), (2008)

    Google Scholar 

  14. ATLAS Collaboration, Jet energy measurement with the ATLAS detector in proton-proton collisions at \(\sqrt{s}\) = 7 TeV, arXiv:1112.6426 [hep-ex]. (Submitted to Eur. Phys. J. C.)

  15. ATLAS Collaboration, Performance of missing transverse momentum reconstruction in proton-proton collisions at 7 TeV with ATLAS. Eur. Phys. J. C72, 1844 (2012). arXiv:1108.5602 [hep-ex]

  16. ATLAS Collaboration, Performance of Primary Vertex Reconstruction in Proton-Proton Collisions at \(\sqrt{s}\) = 7 TeV in the ATLAS experiment, ATLAS-CONF-2010-069 (2010). https://cdsweb.cern.ch/record/1281344

  17. G. Piacquadio, K. Prokofiev, A. Wildauer, Primary vertex reconstruction in the ATLAS experiment at LHC. J. Phys.: Conf. Ser. 119(3), 032033 (2008)

    Google Scholar 

  18. GEANT4 Collaboration, S. Agostinelli et al., GEANT4: a simulation toolkit. Nucl. Instrum. Meth. A506, 250 (2003)

    Google Scholar 

  19. ATLAS Collaboration, The ATLAS, simulation infrastructure. Eur. Phys. J. C70, 823 (2010). arXiv:1005.4568 [physics.ins-det]

  20. J.C. Collins, D.E. Soper, The theorems of perturbative QCD. Ann. Rev. Nucl. Part. Sci. 37, 383–409 (1987)

    Article  ADS  Google Scholar 

  21. M. Dobbs, S. Frixione, E. Laenen, K. Tollefson, H. Baer, et al., Les Houches guidebook to Monte Carlo generators for hadron collider physics. arXiv:hep-ph/0403045 [hep-ph]

  22. A. Buckley, J. Butterworth, S. Gieseke, D. Grellscheid, S. Hoche et al., General-purpose event generators for LHC physics. Phys. Rept. 504, 145–233 (2011). arXiv:1101.2599 [hep-ph]

  23. V. Gribov, L. Lipatov, Deep inelastic e p scattering in perturbation theory. Sov. J. Nucl. Phys. 15, 438–450 (1972)

    Google Scholar 

  24. G. Altarelli, G. Parisi, Asymptotic freedom in parton language. Nucl. Phys. B126, 298 (1977)

    Article  ADS  Google Scholar 

  25. Y. L. Dokshitzer, Calculation of the structure functions for deep inelastic scattering and e+ e- annihilation by perturbation theory in quantum chromodynamics. Sov. Phys. JETP 46, 641–653 (1977)

    Google Scholar 

  26. CTEQ Collaboration, http://www.phys.psu.edu/cteq/

  27. MSTW Collaboration, https://mstwpdf.hepforge.org/

  28. NuTeV Collaboration, http://www-e815.fnal.gov

  29. ZEUS Collaboration, http://www-zeus.desy.de

  30. H1 Collaboration, http://h1.desy.de

  31. M. Mangano, T. Stelzer, Tools for the simulation of hard hadronic collisions. Ann. Rev. Nucl. Part. Sci. 55, 555–588 (2005)

    Article  ADS  Google Scholar 

  32. M. L. Mangano, M. Moretti, F. Piccinini, M. Treccani, Matching matrix elements and shower evolution for top-pair production in hadronic collisions. J. High Energy Phys. 013(01), (2007)

    Google Scholar 

  33. S. Catani, F. Krauss, B. R. Webber, R. Kuhn, QCD matrix elements + parton showers. J. High Energy Phys. 063(11), (2001)

    Google Scholar 

  34. B. Andersson, G. Gustafson, B. Soderberg, A probability measure on parton and string states. Nucl. Phys. B264, 29 (1986)

    Article  ADS  Google Scholar 

  35. B. Webber, A QCD model for jet fragmentation including soft gluon interference. Nucl. Phys. B238, 492 (1984)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Moritz Backes .

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Backes, M. (2014). Data Acquisition and Data Processing. In: Measurement of the Inclusive Electron Cross-Section from Heavy-Flavour Decays and Search for Compressed Supersymmetric Scenarios with the ATLAS Experiment. Springer Theses. Springer, Cham. https://doi.org/10.1007/978-3-319-07136-7_4

Download citation

Publish with us

Policies and ethics