Skip to main content

Part of the book series: Springer Theses ((Springer Theses))

  • 831 Accesses

Abstract

The numerical simulation of quantum systems plays a crucial role in the understanding of quantum phenomena. However classical computation does not allow to achieve this task, in particular with the growing of size and complexity of the quantum system. In 1982 Feynman pointed out that the problem of simulating the full time evolution of arbitrary quantum systems on a classical computer is intractable [1]: the states of a quantum system lie in a vector space whose dimension grows exponentially with the size of the system.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. R. Feynman, Simulating physics with computers. Int. J. Theor. Phys. 21, 476 (1982)

    Article  MathSciNet  Google Scholar 

  2. S. Lloyd, Universal quantum simulators. Science 23, 1073 (1996)

    Article  ADS  MathSciNet  Google Scholar 

  3. A. Friedenauer, H. Schmitz, J.T. Glueckert, D. Porras, T. Schaetz, Simulating a quantum magnet with trapped ions. Nat. Phys. 4, 757 (2008)

    Article  Google Scholar 

  4. M. Greiner, O. Mandel, T. Esslinger, T.W. Hänsch, I. Bloch, Quantum phase transition from a superfluid to a Mott insulator in a gas of ultracold atoms. Nature 415, 39 (2002)

    Article  ADS  Google Scholar 

  5. D.S. Abrams, S. Lloyd, Simulation of many-body Fermi systems on a universal quantum computer. Phys. Rev. Lett. 79, 2586 (1997)

    Article  ADS  Google Scholar 

  6. R. Somma, G. Ortiz, J.E. Gubernatis, E. Knill, R. Laflamme, Simulating physical phenomena by quantum networks. Phys. Rev. A 65, 042323 (2002)

    Article  ADS  Google Scholar 

  7. W.S. Bakr, J.I. Gillen, A. Peng, S. Fölling, M. Greiner, A quantum gas microscope for detecting single atoms in a Hubbard-regime optical lattice. Nature 462, 74 (2009)

    Article  ADS  Google Scholar 

  8. S. Trotzky, L. Pollet, F. Gerbier, U. Schnorrberger, I. Bloch, N.V. Prokofév, B. Svistunov, M. Troyer, Suppression of the critical temperature for superfluidity near the Mott transition. Nat. Phys. 6, 998 (2010)

    Article  Google Scholar 

  9. C. Weitenberg, M. Endres, J.F. Sherson, M. Cheneau, P. Schauß, T. Fukuhara, I. Bloch, S. Kuhr, Single-spin addressing in an atomic Mott insulator. Nature 471, 319 (2011)

    Article  ADS  Google Scholar 

  10. I. Bloch, J. Dalibard, S. Nascimbéne, Quantum simulations with ultracold quantum gases. Nat. Phys. 8, 267 (2012)

    Article  Google Scholar 

  11. R. Gerritsma, G. Kirchmair, F. Zähringer, E. Solano, R. Blatt, C.F. Roos, Quantum simulation of the Dirac equation. Nature 463, 68 (2010)

    Article  ADS  Google Scholar 

  12. K. Kim, M. Chang, S. Korenblit, R. Islam, E.E. Edwards, J.K. Freericks, G.-D. Lin, L.-M. Duan, C. Monroe, Quantum simulation of frustrated Ising spins with trapped ions. Nature 465, 590 (2010)

    Article  ADS  Google Scholar 

  13. J.T. Barreiro, M. Müller, P. Schindler, D. Nigg, T. Monz, M. Chwalla, M. Hennrich, C.F. Roos, P. Zoller, R. Blatt, An open-system quantum simulator with trapped ions. Nature 470, 486 (2011)

    Article  ADS  Google Scholar 

  14. B.P. Lanyon, C. Hempel, D. Nigg, M. Müller, R. Gerritsma, F. Zähringer, P. Schindler, J.T. Barreiro, M. Rambach, G. Kirchmair, M. Hennrich, P. Zoller, R. Blatt, C.F. Roos, Universal digital quantum simulation with trapped ions. Science 334, 57 (2011)

    Article  ADS  Google Scholar 

  15. X. Peng, J. Zhang, J. Du, D. Suter, Quantum simulation of a system with competing two- and three-body interactions. Phys. Rev. Lett. 103, 140501 (2009)

    Article  ADS  Google Scholar 

  16. J. Du, N. Xu, X. Peng, P. Wang, S. Wu, D. Lu, NMR implementation of a molecular hydrogen quantum simulation with adiabatic state preparation. Phys. Rev. Lett. 104, 030502 (2010)

    Article  ADS  Google Scholar 

  17. M. Neeley, M. Ansmann, R.C. Bialczak, M. Hofheinz, E. Lucero, A.D. O’Connell, D. Sank, H. Wang, J. Wenner, A.N. Cleland, M.R. Geller, J.M. Martinis, Emulation of a quantum spin with a superconducting phase qudit. Science 325, 722 (2009)

    Article  ADS  Google Scholar 

  18. A.A. Houck, H.E. Türeci, J. Koch, On-chip quantum simulation with superconducting circuits. Nat. Phys. 8, 292 (2012)

    Article  Google Scholar 

  19. C.Y. Lu, W.B. Gao, O. ühne, X. Q. Zhou, Z. B. Chen, J. W. Pan, Demonstrating anyonic fractional statistics with a six-qubit quantum simulator. Phys. Rev. Lett. 102, 030502 (2009)

    Google Scholar 

  20. B.P. Lanyon, J.D. Whitfield, G.G. Gillett, M.E. Goggin, M.P. Almeida, I. Kassal, J.D. Biamonte, M. Mohseni, B.J. Powell, M. Barbieri, A. Aspuru-Guzik, A.G. White, Towards quantum chemistry on a quantum computer. Nat. Chem. 2, 106 (2010)

    Article  Google Scholar 

  21. M.A. Broome, A. Fedrizzi, B.P. Lanyon, I. Kassal, A. Aspuru-Guzik, A.G. White, Discrete single-photon quantum walks with tunable decoherence. Phys. Rev. Lett. 104, 153602 (2010)

    Article  ADS  Google Scholar 

  22. A. Peruzzo, M. Lobino, J.C.F. Matthews, N. Matsuda, A. Politi, K. Poulios, X.-Q. Zhou, Y. Lahini, N. Ismail, K. Worhoff, Y. Bromberg, Y. Silberberg, M.G. Thompson, J.L. O’Brien, Quantum walks of correlated photons. Science 329, 1500 (2010)

    Article  ADS  Google Scholar 

  23. X. Ma, B. Dakic, W. Naylor, A. Zeilinger, P. Walther, Quantum simulation of the wavefunction to probe frustrated Heisenberg spin systems. Nat. Phys. 7, 399 (2011)

    Article  Google Scholar 

  24. J. C. F. Matthews, K. Poulios, J. D. A. Meinecke, A. Politi, A. Peruzzo, N. Ismail, K. Worhoff, M. G. Thompson, J. L. O’Brien, Simulating quantum statistics with entangled photons: a continuous transition from bosons to fermions, Sci. Rep. 3, 1539 (2013)

    Google Scholar 

  25. L. Sansoni, F. Sciarrino, G. Vallone, P. Mataloni, A. Crespi, R. Ramponi, R. Osellame, Two-particle bosonic-fermionic quantum walk via integrated photonics. Phys. Rev. Lett. 108, 010502 (2012)

    Article  ADS  Google Scholar 

  26. J.L. O’Brien, A. Furusawa, J. Vuckovic, Photonic quantum technologies. Nat. Photonics 3, 687 (2009)

    Article  ADS  Google Scholar 

  27. P. Kwiat, K. Mattle, H. Weinfurter, A. Zeilinger, New high-intensity source of polarization entangled photon pairs. Phys. Rev. Lett. 75, 4337 (1995)

    Article  ADS  Google Scholar 

  28. K. Rosfjord, J. Yang, E. Dauler, A. Kerman, V. Anant, B. Voronov, G. Gol’tsman, K. Berggren, Nanowire single-photon detector with an integrated optical cavity and anti-reflection coating. Opt. Express 14, 527 (2006)

    Article  ADS  Google Scholar 

  29. A. Divochiy, F. Marsili, D. Bitauld, A. Gaggero, R. Leoni, F. Mattioli, A. Korneev, V. Seleznev, N. Kaurova, O. Minaeva, G. Gol’tsman, K. G. Lagoudakis, M. Benkhaoul, F. Lévy, and A. Fiore, Superconducting nanowire photon-number-resolving detector at telecommunication wavelengths, Nat. Photonics 2, 302–306 (2008)

    Google Scholar 

  30. A. Lita, A. Miller, S. Nam, Counting near-infrared single-photons counting near-infrared single-photons with 95% efficiency. Opt. Express 16, 3032 (2008)

    Article  ADS  Google Scholar 

  31. M.G. Tanner, C.M. Natarajan, V.K. Pottapenjara, J.A. O’Connor, R.J. Warburton, R.H. Hadfield, B. Baek, S. Nam, S.N. Dorenbos, E.B. Urena, T. Zijlstra, T.M. Klapwijk, V. Zwiller, Enhanced telecom wavelength single-photon detection with NbTiN superconducting nanowires on oxidized silicon. Appl. Phys. Lett. 96, 221109 (2010)

    Article  ADS  Google Scholar 

  32. O. Cohen, J.S. Lundeen, B.J. Smith, G. Puentes, P.J. Mosley, I.A. Walmsley, Tailored photon-pair generation in optical fibers. Phys. Rev. Lett. 102, 123603 (2009)

    Article  ADS  Google Scholar 

  33. M. Halder, J. Fulconis, B. Cemlyn, A. Clark, C. Xiong, W. Wadsworth, J. Rarity, Nonclassical 2-photon interference with separate intrinsically narrowband fibre sources. Opt. Express 17, 4670 (2009)

    Article  ADS  Google Scholar 

  34. A. Politi, M.J. Cryan, J.G. Rarity, S. Yu, J.L. O’Brien, Silica-on-silicon waveguide quantum circuits. Science 320, 646 (2008)

    Article  ADS  Google Scholar 

  35. A. Politi, J.C.F. Matthews, J.L. O’Brien, Shor’s quantum factoring algorithm on a photonic chip. Science 325, 1221 (2009)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  36. J.C.F. Matthews, A. Politi, A. Stefanov, J.L. O’Brien, Manipulation of multiphoton entanglement in waveguide quantum circuits. Nat. Photonics 3, 346 (2009)

    Article  ADS  Google Scholar 

  37. G.D. Marshall, A. Politi, J.C.F. Matthews, P. Dekker, M. Ams, M.J. Withford, J.L. O’Brien, Laser written waveguide photonic quantum circuits. Opt. Express 17, 12546 (2009)

    Article  ADS  Google Scholar 

  38. A. Laing, A. Peruzzo, A. Politi, M.R. Verde, M. Halder, T.C. Ralph, M.G. Thompson, J.L. O’Brien, High-fidelity operation of quantum photonic circuits. Appl. Phys. Lett. 97, 211108 (2010)

    Article  ADS  Google Scholar 

  39. L. Sansoni, F. Sciarrino, G. Vallone, P. Mataloni, A. Crespi, R. Ramponi, R. Osellame, Polarization entangled state measurement on a chip. Phys. Rev. Lett. 105, 200503 (2010)

    Article  ADS  Google Scholar 

  40. P.J. Shadbolt, M.R. Verde, A. Peruzzo, A. Politi, A. Laing, M. Lobino, J.C.F. Matthews, M.G. Thompson, J.L. O’Brien, Generating, manipulating and measuring entanglement and mixture with a reconfigurable photonic circuit. Nat. Photonics 6, 45 (2011)

    Article  ADS  Google Scholar 

  41. J. Kempe, Quantum random walks—an introductory overview. Contemp Phys. 44, 307 (2003)

    Article  ADS  Google Scholar 

  42. F.W. Strauch, Connecting the discrete- and continuous-time quantum walks. Phys. Rev. A 74, 030301 (2006)

    Article  ADS  MathSciNet  Google Scholar 

  43. V. Potocek, A. Gabris, T. Kiss, I. Jex, Optimized quantum random-walk search algorithms on the hypercube. Phys. Rev. A 79, 012325 (2009)

    Article  ADS  Google Scholar 

  44. A.M. Childs, Universal computation by quantum walk. Phys. Rev. Lett. 102, 180501 (2009)

    Article  ADS  MathSciNet  Google Scholar 

  45. M. Stefanak, I. Jex, T. Kiss, Recurrence and Polya number of quantum walks. Phys. Rev. Lett. 100, 020501 (2008)

    Article  ADS  Google Scholar 

  46. Y. Lahini, Y. Bromberg, D.N. Christodoulides, Y. Silberberg, Quantum correlations in two-particle Anderson localization. Phys. Rev. Lett. 105, 163905 (2010)

    Article  ADS  Google Scholar 

  47. M. Mohseni, P. Rebentrost, S. Lloyd, A. Aspuru-Guzik, Environment-assisted quantum walks in photosynthetic energy transfer. J. Chem. Phys. 129, 174106 (2008)

    Article  ADS  Google Scholar 

  48. M. Karski, L. Forster, J.-M. Choi, A. Steffen, W. Alt, D. Meschede, A. Widera, Quantum walk in position space with single optically trapped atoms. Science 325, 174 (2009)

    Article  ADS  Google Scholar 

  49. H. Schmitz, R. Matjeschk, C. Schneider, J. Glueckert, M. Enderlein, T. Huber, T. Schaetz, Quantum walk of a trapped ion in phase space. Phys. Rev. Lett. 103, 090504 (2009)

    Article  ADS  Google Scholar 

  50. F. Zahringer, G. Kirchmair, R. Gerritsma, E. Solano, R. Blatt, C.F. Roos, Realization of a quantum walk with one and two trapped ions. Physical Review Letters 104, 100503 (2010)

    Article  ADS  Google Scholar 

  51. C.A. Ryan, M. Laforest, J.C. Boileau, R. Laflamme, Experimental implementation of a discrete-time quantum random walk on an NMR quantum-information processor. Phys. Rev. A 72, 062317 (2005)

    Article  ADS  Google Scholar 

  52. H.B. Perets, Y. Lahini, F. Pozzi, M. Sorel, R. Morandotti, Y. Silberberg, Realization of quantum walks with negligible decoherence in waveguide lattices. Phys. Rev. Lett. 100, 170506 (2008)

    Article  ADS  Google Scholar 

  53. A. Schreiber, K.N. Cassemiro, V. Potocek, A. Gabris, P.J. Mosley, E. Andersson, I. Jex, C. Silberhorn, Photons walking the line: A quantum walk with adjustable coin operations. Physical Review Letters 104, 050502 (2010)

    Article  ADS  Google Scholar 

  54. A. Schreiber, K.N. Cassemiro, V. Potocek, A. Gabris, P.J. Mosley, I. Jex, C. Silberhorn, Decoherence and disorder in quantum walks: From ballistic spread to localization. Phys. Rev. Lett. 106, 180403 (2011)

    Article  ADS  Google Scholar 

  55. A. Schreiber, A. Gábris, P.P. Rohde, K. Laiho, M. Stefank, V. Potocek, C. Hamilton, I. Jex, C. Silberhorn, A 2D quantum walk simulation of two-particle dynamics. Science 336, 55 (2012)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Linda Sansoni .

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Sansoni, L. (2014). Introduction to Quantum Simulation. In: Integrated Devices for Quantum Information with Polarization Encoded Qubits. Springer Theses. Springer, Cham. https://doi.org/10.1007/978-3-319-07103-9_8

Download citation

Publish with us

Policies and ethics