Skip to main content

Part of the book series: Springer Theses ((Springer Theses))

  • 576 Accesses

Abstract

In Chap. 5, the effects of dipole–dipole interactions were explored, leading to the saturating behaviour of the electric susceptibility at high density. Experimentally this was demonstrated via a saturation in the optical depth of the ensemble. However, this only probes the imaginary component of the susceptibility. In this chapter we investigate the real part of the susceptibility, responsible for the refractive properties of the medium.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    For air, the index change at optical frequencies \(n-1 \approx 3 \times 10^{-4}\) [8].

References

  1. J.B. Pendry, A.J. Holden, D.J. Robbins, W.J. Stewart, Magnetism from conductors and enhanced nonlinear phenomena. IEEE Transactions on Microwave Theory and Techniques 47, 2075 (1999)

    Article  ADS  Google Scholar 

  2. D. Smith, W. Padilla, D. Vier, S. Nemat-Nasser, S. Schultz, Composite medium with simultaneously negative permeability and permittivity. Phys. Rev. Lett. 84, 4184 (2000)

    Article  ADS  Google Scholar 

  3. M. Choi et al., A terahertz metamaterial with unnaturally high refractive index. Nature 470, 369 (2011)

    Article  ADS  Google Scholar 

  4. G. Dolling, M. Wegener, C.M. Soukoulis, S. Linden, Negative-index metamaterial at 780 nm wavelength. Opt. Lett. 32, 53 (2007)

    Article  ADS  Google Scholar 

  5. D. Schurig et al., Metamaterial electromagnetic cloak at microwave frequencies. Science 314, 977 (2006)

    Article  ADS  MathSciNet  Google Scholar 

  6. W. Cai, U.K. Chettiar, A.V. Kildishev, V.M. Shalaev, Optical cloaking with metamaterials. Nature Photon. 1, 224 (2007)

    Article  ADS  Google Scholar 

  7. T. Ergin, N. Stenger, P. Brenner, J.B. Pendry, M. Wegener, Three-dimensional invisibility cloak at optical wavelengths. Science 328, 337 (2010)

    Article  ADS  Google Scholar 

  8. J.C. Owens, Optical refractive index of air: dependence on pressure, temperature and composition. Applied optics 6, 51 (1967)

    Article  ADS  Google Scholar 

  9. A.S. Zibrov et al., Experimental demonstration of enhanced index of refraction via quantum coherence in Rb. Phys. Rev. Lett. 76, 3935 (1996)

    Article  ADS  Google Scholar 

  10. M. Pototschnig et al., Controlling the Phase of a Light Beam with a Single Molecule. Phys. Rev. Lett. 107, 063001 (2011)

    Article  ADS  Google Scholar 

  11. M. Fleischhauer et al., Resonantly enhanced refractive index without absorption via atomic coherence. Phys. Rev. A 46, 1468 (1992)

    Article  ADS  Google Scholar 

  12. J. Keaveney et al., Optical transmission through a dipolar layer, arxiv.org, 1109.3669v2 (2011), arXiv:1109.3669v2.

    Google Scholar 

  13. C. O’Brien, P.M. Anisimov, Y. Rostovtsev, O. Kocharovskaya, Coherent control of refractive index in far-detuned \(\Lambda \) systems. Phys. Rev. A 84, 063835 (2011)

    Article  ADS  Google Scholar 

  14. Z.J. Simmons, N.A. Proite, J. Miles, D.E. Sikes, D.D. Yavuz, Refractive index enhancement with vanishing absorption in short, high-density vapor cells. Phys. Rev. A 85, 053810 (2012)

    Article  ADS  Google Scholar 

  15. G. Zumofen, N. Mojarad, V. Sandoghdar, M. Agio, Perfect Reflection of Light by an Oscillating Dipole. Phys. Rev. Lett. 101, 180404 (2008)

    Article  ADS  Google Scholar 

  16. S.A. Aljunid et al., Phase Shift of a Weak Coherent Beam Induced by a Single Atom. Phys. Rev. Lett. 103, 153601 (2009)

    Article  ADS  Google Scholar 

  17. T. Kampschulte et al., Optical Control of the Refractive Index of a Single Atom. Phys. Rev. Lett. 105, 153603 (2010)

    Article  ADS  Google Scholar 

  18. Q. Turchette, C. Hood, W. Lange, H. Mabuchi, H. Kimble, Measurement of Conditional Phase Shifts for Quantum Logic. Phys. Rev. Lett. 75, 4710 (1995)

    Article  ADS  MathSciNet  Google Scholar 

  19. J. Hwang et al., A single-molecule optical transistor. Nature 460, 76 (2009)

    Article  ADS  Google Scholar 

  20. S. Kubo et al., Tunability of the refractive index of gold nanoparticle dispersions. Nano Lett. 7, 3418 (2007)

    Article  ADS  MathSciNet  Google Scholar 

  21. R. Brenier, Enhancement of Light Transmission through Silver Nanoparticles. The Journal of Physical Chemistry C 116, 5358 (2012)

    Article  Google Scholar 

  22. E. Boisselier, D. Astruc, Gold nanoparticles in nanomedicine: preparations, imaging, diagnostics, therapies and toxicity. Chem. Soc. Rev. 38, 1759 (2009)

    Article  Google Scholar 

  23. D. A. Giljohann et al., Gold nanoparticles for biology and medicine., Angewandte Chemie (International ed. in English) 49, 3280 (2010).

    Google Scholar 

  24. G.H. Cross et al., The metrics of surface adsorbed small molecules on the Young’s fringe dual-slab waveguide interferometer. J. Phys. D 37, 74 (2004)

    Article  ADS  Google Scholar 

  25. J. C. Maxwell Garnett, Colours in Metal Glasses and in Metallic Films, Phil. Trans. R. Soc. Lond. A 203, 385 (1904).

    Google Scholar 

  26. G. H. Cross, Light under a matter field microscope, arxiv.org, 1303.1390 (2013).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to James Keaveney .

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Keaveney, J. (2014). Giant Refractive Index. In: Collective Atom–Light Interactions in Dense Atomic Vapours. Springer Theses. Springer, Cham. https://doi.org/10.1007/978-3-319-07100-8_6

Download citation

Publish with us

Policies and ethics