Skip to main content

Part of the book series: Springer Theses ((Springer Theses))

  • 564 Accesses

Abstract

The purpose of this chapter is to build on the model developed for thermal atoms, introducing the specific features of spectroscopic measurements in the thin cell.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    For high density vapour the index significantly varies across the resonance (see Chap. 6). However, the lifetime of the state reduces significantly due to atom-atom interactions, to the point where a wall-to-wall transit is unlikely. In this case, Dicke narrowing becomes less important to the lineshape.

  2. 2.

    Whose finesse, \(\mathcal {F}\), is related to the reflectivity, \(R\), of the windows by \(\mathcal {F} = \pi \sqrt{R}/(1-R)\) [8]. For sapphire, \(n=1.8\) and \(R=0.28\), yielding a finesse \(\mathcal {F}\sim 2\).

References

  1. R. Dicke, The effect of collisions upon the Doppler width of spectral lines. Phys. Rev. 89, 472 (1953)

    Article  ADS  Google Scholar 

  2. R. Romer, R. Dicke, New technique for high-resolution microwave spectroscopy. Phys. Rev. 99, 532 (1955)

    Article  ADS  Google Scholar 

  3. S. Briaudeau, S. Saltiel, G. Nienhuis, D. Bloch, M. Ducloy, Coherent Doppler narrowing in a thin vapor cell: Observation of the Dicke regime in the optical domain. Phys. Rev. A 57, R3169 (1998)

    Article  ADS  Google Scholar 

  4. D. Sarkisyan et al., Spectroscopy in an extremely thin vapor cell: Comparing the cell-length dependence in fluorescence and in absorption techniques. Phys. Rev. A 69, 065802 (2004)

    Article  ADS  Google Scholar 

  5. S. Briaudeau, D. Bloch, M. Ducloy, Detection of slow atoms in laser spectroscopy of a thin vapor lm. Europhys. Lett. 35, 337 (1996)

    Article  ADS  Google Scholar 

  6. H. de Freitas, M. Oria, M. Chevrollier, Spectroscopy of cesium atoms adsorbing and desorbing at a dielectric surface. Appl. Phys. B 75, 703 (2002)

    Article  ADS  Google Scholar 

  7. G. Dutier et al., Collapse and revival of a Dicke-type coherent narrowing in a sub-micron thick vapor cell transmission spectroscopy. Europhys. Lett. 63, 35 (2003)

    Article  ADS  Google Scholar 

  8. W.T. Silfvast, Laser Fundamentals, 2nd edn. (Cambridge University Press, Cambridge, 2004)

    Book  Google Scholar 

  9. G. Dutier, S. Saltiel, D. Bloch, M. Ducloy, Revisiting optical spectroscopy in a thin vapor cell: Mixing of renection and transmission as a Fabry Perot microcavity effect. J. Opt. Soc. Am. B 20, 793 (2003)

    Article  ADS  Google Scholar 

  10. J. Woerdman, M.F.H. Schuurmans, Spectral narrowing of selective reflection from sodium vapour. Opt. Commun. 14, 248 (1975)

    Article  ADS  Google Scholar 

  11. M.F.H. Schuurmans, Spectral narrowing of selective reflection. J. Phys. (Paris) 37, 469 (1976)

    Article  Google Scholar 

  12. J.J. Maki, M.S. Malcuit, J.E. Sipe, R.W. Boyd, Linear and nonlinear optical measurements of the Lorentz local field. Phys. Rev. Lett. 67, 972 (1991)

    Article  ADS  Google Scholar 

  13. V.A. Sautenkov, H. van Kampen, E. Eliel, J. Woerdman, Dipole-Dipole broadened line shape in a partially excited dense atomic gas. Phys. Rev. Lett. 77, 3327 (1996)

    Article  ADS  Google Scholar 

  14. H. Li, V.A. Sautenkov, Y.V. Rostovtsev, M.O. Scully, Excitation dependence of resonance line self-broadening at different atomic densities. J. Phys. B 42, 065203 (2009)

    Article  ADS  Google Scholar 

  15. G. Brooker, Modern Classical Optics (Oxford University Press, Oxford, 2003)

    MATH  Google Scholar 

  16. R.W. Boyd, Nonlinear Optics, 3rd edn. (Academic Press, New York, 2008)

    Google Scholar 

  17. B.E. Sherlock, I.G. Hughes, How weak is a weak probe in laser spectroscopy? Am. J. Phys. 77, 111 (2009)

    Article  ADS  Google Scholar 

  18. T. Lindvall, I. Tittonen, Interaction-time-averaged optical pumping in alkali-metal-atom Doppler spectroscopy. Phys. Rev. A 80, 032505 (2009)

    Article  ADS  Google Scholar 

  19. P. Siddons, C.S. Adams, C. Ge, I.G. Hughes, Absolute absorption on rubidium D lines: comparison between theory and experiment. J. Phys. B 41, 155004 (2008)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to James Keaveney .

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Keaveney, J. (2014). Thin Cell Spectroscopy. In: Collective Atom–Light Interactions in Dense Atomic Vapours. Springer Theses. Springer, Cham. https://doi.org/10.1007/978-3-319-07100-8_3

Download citation

Publish with us

Policies and ethics