Skip to main content

Structural and Magnetic Properties of Amorphous Co–W Alloyed Nanoparticles

  • Chapter
  • First Online:
  • 899 Accesses

Part of the book series: Springer Theses ((Springer Theses))

Abstract

This section is devoted to investigate a system of amorphous Co–W alloy nanoparticles (NPs). The sequential alumina-Co–W deposition technique employed for their preparation allows to obtain self-organized arrays of particles with controlled geometries, i.e., particle sizes and interparticle distances. This potentiality has been expanded to study the magnetic properties of the amorphous Co–W NPs. In particular, we study the open question whether amorphous alloy nanoparticles may support intrinsic magnetic anisotropy, induced by alloying, irrespective of surface effects usually present in NPs systems.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Notes

  1. 1.

    http://www.trt.thalesgroup.com/ump-cnrs-thales/.

  2. 2.

    http://sai.unizar.es/microscop-mat/.

  3. 3.

    http://icsd.iqfr.csic.es/icsd/.

  4. 4.

    http://www.cnme.es/.

  5. 5.

    http://ina.unizar.es/lma/index.html.

  6. 6.

    http://icsd.iqfr.csic.es/icsd/.

  7. 7.

    EXAFS spectra for the Au-capped Co NPs were recorded during the same experiment and compared to those for the uncapped Co–NPs, both with the same \(t_{\text {Co}}= 0.7\) nm. We found that both systems have fcc structure and very close first near neighbor distances. Their Fourier Transformed EXAFS profiles are almost identical, even for outher coordination shells. The first coordination shell peak in the Co–Au NPs is higher in amplitude than the uncapped ones and it increases with the content of Au in the sample due to the high crystallinity in these noble-metal capped particles. Then, contrary to the case of W deposit, noble metals-capping do not modify the crystal structure of the Co NPs.

  8. 8.

    http://www.sgte.org/.

  9. 9.

    See details of the induced magnetic moments in the W atoms of these samples in Chap. 4.

  10. 10.

    Data obtained from the NIST Electron Effective-Attenuation-Length Database, http://www.nist.gov/srd/nist82.cfm.

  11. 11.

    XMCD measurements at the W \(L_{\text {2,3}}\) edges on these W-capped Co nanoparticles samples have been performed to determine the induced magnetic moment of W. It was found to be on the order of \(\sim \) \(10^{-3} \mu _B/\text {W}\) at 10 K, which is two orders of magnitude lower than the Co moment measured in the samples. These results will be described in detail in Chap. 4.

References

  1. M.W. Grinstaff, M.B. Salamon, K.S. Suslick, Phys. Rev. B 48, 269–274 (1993)

    Article  ADS  Google Scholar 

  2. X. Cao, Yu. Koltypin, G. Kataby, R. Prozorov, A. Gedanken, J. Mater. Res. 10, 2952–2957 (1995)

    Article  ADS  Google Scholar 

  3. X. Cao, Yu. Koltypin, R. Prozorov, G. Katabya, A. Gedanken, J. Mater. Chem. 7, 2447–2451 (1997)

    Article  Google Scholar 

  4. K.J. Carroll, J.A. Pitts, K. Zhang, A.K. Pradhan, E.E. Carpenter, J. Appl. Phys. 107, 09A302 (2010)

    Google Scholar 

  5. M. Muruganandham, R. Amutha, B. Ahmmad, E. Repo, M. Sillanpaa, J. Phys. Chem. C 114, 22493–22501 (2010)

    Article  Google Scholar 

  6. G. Kataby, A. Ulman, R. Prozorov, A. Gedanken, Langmuir 14, 1512–1515 (1998)

    Article  Google Scholar 

  7. G. Kataby, Yu. Koltypin, A. Ulman, I. Felner, A. Gedanken, Appl. Surf. Sci. 201, 191–195 (1997)

    Article  ADS  Google Scholar 

  8. J.L. Dormann, D. Fiorani, E. Tronc, Adv. Chem. Phys. 98, 283 (1997)

    Google Scholar 

  9. J.L. Dormann, A. Belayachi, J. Maknani, A. Ezzir, M. Cruz, M. Godinho, R. Cherkaoui, M. Nogues, J. Magn. Magn. Mat. 185, 1–17 (1998)

    Google Scholar 

  10. E. DeBiasi, C.A. Ramos, R.D. Zysler, H. Romero, Phys. Rev. B 65, 144416 (2002)

    Article  ADS  Google Scholar 

  11. R.D. Zysler, H. Romero, C.A. Ramos, E. DeBiasi, D. Fiorani, J. Magn. Magn. Mat. 266, 233–242 (2003)

    Article  ADS  Google Scholar 

  12. Y. Koltypin, G. Katabi, X. Cao, R. Prozorov, A. Gedanken, J. Non-Cryst. Solids 201, 159–162 (1996)

    Article  ADS  Google Scholar 

  13. K.V.P.M. Shafi, A. Gedankenb, R.B. Goldfarb, I. Felner, J. Appl. Phys. 81, 6901–6906 (1997)

    Article  ADS  Google Scholar 

  14. K.V.P.M. Shafi, Y. Koltypin, A. Gedanken, R. Prozorov, J. Balogh, J. Lendvai, I. Felner, J. Phys. Chem. B 101, 6409–6414 (2010)

    Google Scholar 

  15. K.H.J. Buschow, P.G. van Engen, R. Jongebreur, J. Magn. Magn. Mat. 38, 1–22 (1983)

    Article  ADS  Google Scholar 

  16. K.H.J. Buschow, J. Appl. Phys. 54, 2578–2581 (1983)

    Article  ADS  Google Scholar 

  17. M. Donten, Z. Stojek, J. Appl. Electochem. 26, 665–672 (1996)

    Article  Google Scholar 

  18. M. Donten, T. Gromulski, Z. Stojek, J. Alloys. Comp. 279, 272 (1998)

    Article  Google Scholar 

  19. M. Naoe, H. Kazama, Y. Hoshi, S. Yamanaka, J. Appl. Phys. 53, 7846–7848 (1982)

    Article  ADS  Google Scholar 

  20. J. Dubowik, Y.V. Kudryavtsev, R. Gontarz, Acta Phys. Pol. A. 76, 331–335 (1989)

    Google Scholar 

  21. M.A.M. Ibrahim, S.S. Abd El Rehim, S.O. Moussa, J. Appl. Electochem. 33, 627–633 (2003)

    Article  Google Scholar 

  22. K. Ounadjela, G. Suran, F. Machizaud, Phys. Rev. B 40, 578–586 (1989)

    Article  ADS  Google Scholar 

  23. M. Naili, G. Suran, J. Magn. Magn. Mat. 135, 141–146 (1994)

    Article  ADS  Google Scholar 

  24. J. Bartolomé, L.M. García, F. Bartolomé, F. Luis, R. López-Ruiz, F. Petroff, C. Deranlot, F. Wilhelm, A. Rogalev, P. Bencok, N.B. Brookes, L. Ruiz, J.M. González-Calbet, Phys. Rev. B 77, 184420 (2008)

    Google Scholar 

  25. D. Babonneau, F. Petroff, J.L. Maurice, F. Fettar, A. Vaures, A. Naudons, Appl. Phys. Lett. 76, 2892–2894 (2000)

    Article  ADS  Google Scholar 

  26. F. Luis, J.M. Torres, L.M. García, J. Bartolomé, J. Stankiewicz, F. Petroff, F. Fettar, J.L. Maurice, A. Vaures, Phys. Rev. B 65, 094409 (2002)

    Article  ADS  Google Scholar 

  27. J. Rodriguez-Carvajal, Phys. B 192, 55 (1993)

    Article  ADS  Google Scholar 

  28. T. Omi, H. Yamamoto, H.L. Glass, J. Electrochem. Soc. 119, 168–173 (1972)

    Article  Google Scholar 

  29. F. Machizaud, K. Ounadjela, G. Suran, Phys. Rev. B 40, 587–595 (1989)

    Article  ADS  Google Scholar 

  30. D. Babonneau, D. Lantiat, S. Camelio, J. Toudert, L. Simonot, F. Pailloux, M.-F. Denanot, T. Girardeau, Eur. Phys. J. Appl. Phys. 44, 3–9 (2008)

    Google Scholar 

  31. J. Briático, J.-L. Maurice, J. Carrey, D. Imhoff, F. Petroff, A. Vaurès, Eur. Phys. J. D. 9, 517–521 (1999)

    Article  ADS  Google Scholar 

  32. G. Qin, N. Xiao, B. Yang, Y. Ren, W. Pei, X. Zhao, Acta Metall. Sin. 22, 415–420 (2009)

    Article  Google Scholar 

  33. B. Ravel, M. Newville, J. Synchrotron Rad. 12, 537–541 (2005)

    Article  Google Scholar 

  34. B. Ravel, J. Synchrotron Rad. 8, 314–316 (2001)

    Article  Google Scholar 

  35. B. Moraweck, A.J. Renouprez, E.K. Hlil, R. Baudoing-Savois, J. Phys. Chem. 97, 4288–4292 (1993)

    Article  Google Scholar 

  36. M. Kuhn, T.K. Sham, J.M. Chen, K.H. Tan, Sol. State Comm. 75, 861–865 (1990)

    Article  ADS  Google Scholar 

  37. A. Yevick, A.I. Frenkel, Phys. Rev. B 81, 115451 (2010)

    Article  ADS  Google Scholar 

  38. A.L. Ageev, YuA Babanov, V.V. Vasin, N.V. Ershov, A.V. Serikov, Phys. Stat. Sol. (b) 117, 345 (1983)

    Article  ADS  Google Scholar 

  39. M.L. Fdez-Gubieda, A. García-Arribas, I. Orue, F. Plazaola, J.M. Barandiarán, Europhys. Lett. 40, 43–48 (1997)

    Article  ADS  Google Scholar 

  40. A. Sadoc, D. Raoux, P. Lagarde, A. Fontaine, J. Non-Cryst. Solids 50, 331–349 (1982)

    Article  ADS  Google Scholar 

  41. F. Luis, F. Bartolomé, F. Petroff, J. Bartolomé, L.M. García, C. Deranlot, H. Jaffrès, M.J. Martínez, P. Bencok, F. Wilhelm, A. Rogalev, N. Brookes, Europhys. Lett. 76, 142–148 (2006)

    Google Scholar 

  42. R.D. Zysler, E. DeBiasi, C.A. Ramos, D. Fiorani, Surface and Interparticle Effects in Amorphous Magnetic Nanoparticles, chapter 8 (Springer, USA, 2005)

    Google Scholar 

  43. P. Hansen, Magnetic Amorphous Alloys, vol. 6, chapter 4, (Elsevier Science Pub. B.V., The Netherlands, 1991), p. 289–452

    Google Scholar 

  44. P. Bracconi, L.C. Dufour, Metall. Mater. Trans. B 7, 321–327 (1976)

    Article  ADS  Google Scholar 

  45. P. Carra, B.T. Thole, M. Altarelli, X. Wang, Phys. Rev. Lett. 70, 694 (1993)

    Article  ADS  Google Scholar 

  46. B.T. Thole, P. Carra, F. Sette, G. vanderLaan, Phys. Rev. Lett. 68, 1943 (1992)

    Google Scholar 

  47. J. Stohr, J. Electron Spectrosc. Relat. Phenom. 75, 253 (1995)

    Article  Google Scholar 

  48. M. Tischer, O. Hjortstam, D. Arvanitis, J.H. Dunn, F. May, K. Baberschke, J. Trygg, J.M. Wills, B. Johansson, O. Eriksson, Phys. Rev. Lett. 75, 1602 (1995)

    Google Scholar 

  49. C.T. Chen, Y.U. Idzerda, H.-J. Lin, N.V. Smith, G. Meigs, E. Chaban, G.H. Ho, E. Pellegrin, F. Sette, Phys. Rev. Lett. 75, 152 (1995)

    Article  ADS  Google Scholar 

  50. M.G. Samant, J. Stohr, S.S.P. Parkin, G.A. Held, B.D. Hermsmeier, F. Herman, M. van Schilfgaarde, L.-C. Duda, D.C. Mancini, N. Wassdahl, R. Nakajima, Phys. Rev. Lett. 72, 1112 (1994)

    Google Scholar 

  51. Reiko Nakajima, J. Stöhr, Y.U. Idzerda, Electron-yield saturation effects in l-edge X-ray magnetic circular dichroism spectra of fe, co, and ni. Phys. Rev. B 59, 6421–6429 (1999)

    Article  ADS  Google Scholar 

  52. K. Fauth, Appl. Phys. Lett. 85, 3271 (2004)

    Article  ADS  Google Scholar 

  53. A. Kleibert, K.-H. Meiwes-Broer, J. Bansmann, Size-dependent magnetic spin and orbital moments of fe nanoparticles deposited onto co/w(110). Phys. Rev. B 79, 125423 (2009)

    Article  ADS  Google Scholar 

  54. R.C. O’Handley, Amorphous Materials: Magnetism and Disorder, Chapter 11 (A Wiley-interscience publication, Wiley, New York, 2000)

    Google Scholar 

  55. F. Tournus, A. Tamion, N. Blanc, A. Hannour, L. Bardotti, B. Prével, P. Ohresser, E. Bonet, T. Epicier, V. Dupuis, Phys. Rev. B 77, 144411 (2008)

    Google Scholar 

  56. A.R. Mackintosh, O.K. Andersen, The Electronic Structure of Transition Metals, Chapter 5 (Cambridge University Press, Cambridge, 1980), pp. 149–224

    Google Scholar 

  57. M. Vijayakumar, M.S. Gopinathan, J. Mol. Struct. 361, 15–19 (1996)

    Article  Google Scholar 

  58. W.A. Sucksmith, J.E. Thompson, Proc. R. Soc. London 225, 362–375 (1954)

    Article  ADS  Google Scholar 

  59. M. Spasova, U. Wiedwald, R. Ramchal, M. Farle, M. Jergel, E. Majkova, S. Luby, R. Senderak, Phys. Stat. Sol. (b) 225, 449–457 (2001)

    Article  ADS  Google Scholar 

  60. M. Ohkoshi, N. Watanabe, K. Tsushima, J. Magn. Magn. Mat. 113, 92–96 (1992)

    Article  ADS  Google Scholar 

  61. M. Rossignol, M. Schlenker, Y. Samson, Ferromagnetism of an Ideal System, Chapter 5 (Springer, New York, 2005), pp. 143–208. Magnetism

    Google Scholar 

  62. J.A. Osborn, Demagnetizing factors of the general ellipsoid. Phys. Rev. 67, 351–357 (1945)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Adriana I. Figueroa .

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Figueroa, A.I. (2015). Structural and Magnetic Properties of Amorphous Co–W Alloyed Nanoparticles. In: Magnetic Nanoparticles. Springer Theses. Springer, Cham. https://doi.org/10.1007/978-3-319-07094-0_3

Download citation

Publish with us

Policies and ethics