Skip to main content

Experimental Techniques

  • Chapter
  • First Online:
  • 903 Accesses

Part of the book series: Springer Theses ((Springer Theses))

Abstract

This section is addressed to briefly describe the main experimental techniques used to study the structural and magnetic properties of the nanoparticles included in this thesis.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Notes

  1. 1.

    http://www.cnme.es/.

  2. 2.

    http://ina.unizar.es/lma/index.html.

  3. 3.

    http://sai.unizar.es/medidas/index.html.

  4. 4.

    For further information of SQUID magnetometers see Ref. [1] and/or the Quantum Design website http://www.qdusa.com/index.html.

  5. 5.

    http://sai.unizar.es/medidas/index.html.

  6. 6.

    General diagram of Synchrotron Soleil with Copyright EPSIM 3D/JF Santarelli.

  7. 7.

    http://www.esrf.eu/.

  8. 8.

    In a recent upgrade, performed in 2011, the ESRF BM29 beamline has been relocated to the BM23 port, which is the one currently operational. For further information see http://www.esrf.eu/UsersAndScience/Experiments/ElectStructMagn/BM23/.

  9. 9.

    For further information about ID08 and ID12 beamlines, please visit http://www.esrf.eu/UsersAndScience/Experiments/ElectStructMagn.

References

  1. R. C. Black, F. C. Wellstood Measurements of Magnetism and Magnetic Properties of Matter, Chapter 12, (Wiley, New York, 2006), pp. 391–480

    Google Scholar 

  2. E.H. Hall, On a new action of the magnet on electric currents. Am.J. Math. 2(3), 287–292 (1879)

    Article  MATH  Google Scholar 

  3. A. Gerber, A. Milner, M. Karpovsky, B. Lemke, H.-U. Habermeier, J. Tuaillon-Combes, M. Négrier, O. Boisron, P. Mélinon, A. Perez, J. Magn. Magn. Mater. 242–245, 90–97 (2002)

    Google Scholar 

  4. J. Lindemuth, B. Dodrill, IEEE Trans. Magn. 40, 2191 (2004)

    Article  ADS  Google Scholar 

  5. N. Nagaosa, J. Sinova, S. Onoda, A.H. MacDonald, N.P. Ong, Anomalous hall effect. Rev. Mod. Phys. 82, 1539–1592 (2010)

    Article  ADS  Google Scholar 

  6. J.M. Hollas, Modern Spectroscopy (Wiley, New York, 2004)

    Google Scholar 

  7. M. Hof, Basics of Optical Spectroscopy (Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, 2005), pp. 37–47

    Google Scholar 

  8. S. Conradson, XAFS. A technique to probe local structure. Los Alamos Sci. 26, 422 (2000)

    Google Scholar 

  9. M. Newville, Fundamentals of XAFS (University of Chicago, Chicago, 2004)

    Google Scholar 

  10. A. Filipponi, M. Borowski, D.T. Bowron, S. Ansell, A. Di Cicco, S. De Panfilis, J.P. Itie, Rev. Sci. Intrum. 71, 2422 (2000)

    Article  ADS  Google Scholar 

  11. G. Schütz, M. Knülle, R. Wienke, W. Wilhelm, W. Wagner, P. Kienle, R. Frahm, Z. Phys. B Condens. Matter. 73(1), 67–75 (1988)

    Article  ADS  Google Scholar 

  12. U. Fano, Spin orientation of photoelectrons ejected by circularly polarized light. Phys. Rev. 178, 131–136 (1969)

    Article  ADS  Google Scholar 

  13. B.T. Thole, P. Carra, F. Sette, G. vander Laan, Phys. Rev. Lett. 68, 1943 (1992)

    Google Scholar 

  14. P. Carra, B.T. Thole, M. Altarelli, X. Wang, Phys. Rev. Lett. 70, 694 (1993)

    Article  ADS  Google Scholar 

  15. J. Stohr, J. Electron Spectrosc. Relat. Phenom. 75, 253 (1995)

    Article  Google Scholar 

  16. C.T. Chen, Y.U. Idzerda, H.-J. Lin, N.V. Smith, G. Meigs, E. Chaban, G.H. Ho, E. Pellegrin, F. Sette, Phys. Rev. Lett. 75, 152 (1995)

    Article  ADS  Google Scholar 

  17. J. Stohr, Phys. Rev. Lett. 75, 3748–3751 (1995)

    Article  ADS  Google Scholar 

  18. C. Piamonteze, P. Miedema, M.F. de Groot, Accuracy of the spin sum rule in XMCD for the transition-metal \(l\) edges from manganese to Copper. Phys. Rev. B 80, 184410 (2009)

    Article  ADS  Google Scholar 

  19. V.V. Krishnamurthy, D.J. Singh, N. Kawamura, M. Suzuki, T. Ishikawa, Phys. Rev. B 74, 064411 (2006)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Adriana I. Figueroa .

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Figueroa, A.I. (2015). Experimental Techniques. In: Magnetic Nanoparticles. Springer Theses. Springer, Cham. https://doi.org/10.1007/978-3-319-07094-0_2

Download citation

Publish with us

Policies and ethics