Skip to main content

Part of the book series: Springer Theses ((Springer Theses))

  • 578 Accesses

Abstract

The following work was published with minor modifications in [1, 2].

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    In Sect.5.2 we show that if one considers also adiabatic branches, the reversible limit can be obtained [3].

  2. 2.

    The reversibility here refers to the individual branches. As pointed out in Sect.5.1.1, the abrupt change in temperature, when switching between the branches, implies that there exists no reversible limit for the complete cycle.

  3. 3.

    Note that due to the choice of the Glauber rates in Eq. 5.1, the relaxation rate \([\lambda _\mathrm{U}(t) + \lambda _\mathrm{D}(t)]\) (for frozen energy levels at any time instant \(t\)) is bounded by 2\(\nu \).

  4. 4.

    Only \(\delta \)-functions are referred to as singularities here.

  5. 5.

    It turns out that for general parameters \(g_{\pm }\) the Green’s function (5.32) is given by a sum of Gauss hypergeometric functions [26] and the integral Eq. (2.81) becomes quite complicated.

References

  1. Chvosta, P., Holubec, V., Ryabov, A., et. al. (2010). Thermodynamics of two-stroke engine based on periodically driven two-level system. Physica E: Low-dimensional Systems and Nanostructures, 42(3), 472–476. ISSN 1386–9477, http://dx.doi.org/10.1016/j.physe.2009.06.031, proceedings of the international conference Frontiers of Quantum and Mesoscopic Thermodynamics FQMT ’08. http://www.sciencedirect.com/science/article/pii/S1386947709002380.

  2. Chvosta, P., Einax, M., Holubec, V., et. al. (2010). Energetics and performance of a microscopic heat engine based on exact calculations of work and heat distributions. Journal of Statistical Mechanics: Theory and Experiment, 2010(nr. 03), P03002. http://stacks.iop.org/1742-5468/2010/i=03/a=P03002.

  3. Sekimoto, K., Takagi, F., & Hondou, T. (2000). Carnot’s cycle for small systems: Irreversibility and cost of operations. Physical Review E, 62, 7759–7768. doi:10.1103/PhysRevE.62.7759, http://link.aps.org/doi/10.1103/PhysRevE.62.7759.

  4. Šubrt, E., & Chvosta, P. (2007). Exact analysis of work fluctuations in two-level systems. Journal of Statistical Mechanics: Theory and Experiment, 2007(nr. 09), P09019. http://stacks.iop.org/1742-5468/2007/i=09/a=P09019.

  5. Einax, M., Korner, M., Maass, P., et. al. (2010). Nonlinear hopping transport in ring systems and open channels. Physical Chemistry Chemical Physics: PCCP, 12, 645–654, doi:10.1039/B916827C, http://dx.doi.org/10.1039/B916827C.

  6. Slater, L. (1960). Confluent hypergeometric functions. New York: Cambridge University Press. http://books.google.cz/books?id=BKUNAQAAIAAJ.

  7. Abramowitz, M., & Stegun, I. (1964). Handbook of mathematical functions: With formulars, graphs, and mathematical tables. Applied mathematics series. New York: Dover Publications, Incorporated, ISBN 9780486612720, http://books.google.se/books?id=MtU8uP7XMvoC.

  8. Einax, M., & Maass, P. (2009). Work distributions for Ising chains in a time-dependent magnetic field. Physical Review E, 80, 020101, doi:10.1103/PhysRevE.80.020101, http://link.aps.org/doi/10.1103/PhysRevE.80.020101.

  9. Speck, T., & Seifert, U. (2004). Distribution of work in isothermal nonequilibrium processes. Physical Review E, 70, 066112, doi:10.1103/PhysRevE.70.066112, http://link.aps.org/doi/10.1103/PhysRevE.70.066112.

  10. Engel, A. (2009). Asymptotics of work distributions in nonequilibrium systems. Physical Review E, 80, 021120, doi:10.1103/PhysRevE.80.021120, http://link.aps.org/doi/10.1103/PhysRevE.80.021120.

  11. Jarzynski, C. (1997). Nonequilibrium Equality for Free Energy Differences. Physical Review Letter, 78, 2690–2693, doi:10.1103/PhysRevLett.78.2690, http://link.aps.org/doi/10.1103/PhysRevLett.78.2690.

  12. Crooks, G. E. (1999). Entropy production fluctuation theorem and the nonequilibrium work relation for free energy differences. Physical Review E, 60, 2721–2726, doi:10.1103/PhysRevE.60.2721, http://link.aps.org/doi/10.1103/PhysRevE.60.2721.

  13. Holubec, V., Chvosta, P., Einax, M., et. al. (2011). Attempt time Monte Carlo: An alternative for simulation of stochastic jump processes with time-dependent transition rates. EPL (Europhysics Letters), 93(nr. 4), 40003. http://stacks.iop.org/0295-5075/93/i=4/a=40003.

  14. Zia, R. K. P., Praestgaard, E. L., & Mouritsen, O. G. (2002) Getting more from pushing less: Negative specific heat and conductivity in nonequilibrium steady states. American Journal of Physics, 70(4), 384–392. doi:10.1119/1.1427088, http://link.aip.org/link/?AJP/70/384/1.

  15. Manosas, M., Mossa, A., Forns, N., et. al. (2009) Dynamic force spectroscopy of DNA hairpins: II. Irreversibility and dissipation. Journal of Statistical Mechanics: Theory and Experiment, 2009(nr. 02), P02061. http://stacks.iop.org/1742-5468/2009/i=02/a=P02061.

  16. Snyder, D. (1975). Random point processes. New York: Wiley. ISBN 9780471810216. http://books.google.cz/books?id=veRQAAAAMAAJ.

  17. Schmiedl, T., & Seifert, U. (2008). Efficiency at maximum power: An analytically solvable model for stochastic heat engines. EPL (Europhysics Letters), 81(nr. 2) 20003. http://stacks.iop.org/0295-5075/81/i=2/a=20003.

  18. Blickle, V., & Bechinger, C. (2011). Realization of a micrometre-sized stochastic heat engine. Nature Physics, 8(2), 143–146. doi:10.1038/nphys2163, http://dx.doi.org/10.1038/nphys2163.

  19. Giampaoli, J. A., Strier, D. E., Batista, C., et. al. (1999). Exact expression for the diffusion propagator in a family of time-dependent anharmonic potentials. Physical Review E, 60, 2540–2546, doi:10.1103/PhysRevE.60.2540, http://link.aps.org/doi/10.1103/PhysRevE.60.2540.

  20. Strier, D. E., Drazer, G., & Wio, H. S. (2000). An analytical study of stochastic resonance in a monostable non-harmonic system. Physica A: Statistical Mechanics and its Applications, 283, 255–260, ISSN 0378–4371, doi:10.1016/S0378-4371(00)00163-1, http://www.sciencedirect.com/science/article/pii/S0378437100001631.

  21. Ryabov, A., Dierl, M., Chvosta, P., et. al. (2013). Work distribution in a time-dependent logarithmic-harmonic potential: exact results and asymptotic analysis. Journal of Physics A: Mathematical and Theoretical, 46(nr. 7), 075002. http://stacks.iop.org/1751-8121/46/i=7/a=075002.

  22. Cohen, A. E. (2005). Control of Nanoparticles with Arbitrary Two-Dimensional Force Fields. Physical Review Letter, 94, 118102, doi:10.1103/PhysRevLett.94.118102, http://link.aps.org/doi/10.1103/PhysRevLett.94.118102.

  23. Esposito, M., Lindenberg, K., & Van den Broeck, C. (2009). Universality of efficiency at maximum power. Physical Review Letter, 102, 130602, doi:10.1103/PhysRevLett.102.130602, http://link.aps.org/doi/10.1103/PhysRevLett.102.130602.

  24. Esposito, M., Kawai, R., Lindenberg, K., et. al. (2010). Efficiency at maximum power of low-dissipation carnot engines. Physical Review Letter, 105, 150603, doi:10.1103/PhysRevLett.105.150603, http://link.aps.org/doi/10.1103/PhysRevLett.105.150603.

  25. Wang, Y., & Tu, Z. C. (2012) Efficiency at maximum power output of linear irreversible Carnot-like heat engines. Physical Review E, 85, 011127, doi:10.1103/PhysRevE.85.011127, http://link.aps.org/doi/10.1103/PhysRevE.85.011127.

  26. Prudnikov, A., Brychkov, I., & Maričev, O. (1986). Integrals and series: Special functions. Volume 2. Integrals and series. Boca Raton: C R C Press LLC, ISBN 9782881240904. http://books.google.cz/books?id=2t2cNs00aTgC.

  27. Speck, T. (2011). Work distribution for the driven harmonic oscillator with time-dependent strength: exact solution and slow driving. Journal of Physics A: Mathematical and Theoretical, 44(nr. 30) 305001. http://stacks.iop.org/1751-8121/44/i=30/a=305001.

  28. Nickelsen, D., & Engel, A. (2011). Asymptotics of work distributions: the pre-exponential factor. The European Physical Journal B, 82, 207–218, ISSN 1434–6028, doi:10.1140/epjb/e2011-20133-y, http://dx.doi.org/10.1140/epjb/e2011-20133-y.

  29. Then, H., & Engel, A. (2008). Computing the optimal protocol for finite-time processes in stochastic thermodynamics. Physical Review E, 77, 041105, doi:10.1103/PhysRevE.77.041105, http://link.aps.org/doi/10.1103/PhysRevE.77.041105.

  30. Zhan-Chun, T. (2012). Recent advance on the efficiency at maximum power of heat engines. Chinese Physics B, 21(nr. 2), 020513. http://stacks.iop.org/1674-1056/21/i=2/a=020513.

  31. Schmiedl, T., & Seifert, U. (2007). Optimal finite-time processes in stochastic thermodynamics. Physical Review Letter, 98, 108301, doi:10.1103/PhysRevLett.98.108301, http://link.aps.org/doi/10.1103/PhysRevLett.98.108301.

  32. Izumida, Y., & Okuda, K. (2012). Efficiency at maximum power of minimally nonlinear irreversible heat engines. EPL (Europhysics Letters), 97(nr. 1), 10004. http://stacks.iop.org/0295-5075/97/i=1/a=10004.

  33. Eriksen, P., Ackermann, T., Abildgaard, H., et. al. (2005). System operation with high wind penetration. IEEE Power and Energy Magazine, 3(nr. 6), 65–74, ISSN 1540–7977, doi:10.1109/MPAE.2005.1524622.

  34. Jung, P., & Hänggi, P. (1990). Resonantly driven Brownian motion: Basic concepts and exact results. Physical Review A, 41, 2977–2988, doi:10.1103/PhysRevA.41.2977, http://link.aps.org/doi/10.1103/PhysRevA.41.2977.

  35. Hänggi, P., Marchesoni, F., & Nori, F. (2005). Brownian motors. Annalen der Physik, 14(1–3), 51–70. ISSN 1521–3889, doi:10.1002/andp.200410121, http://dx.doi.org/10.1002/andp.200410121.

  36. Hänggi, P., & Marchesoni, F. (2009). Artificial Brownian motors: Controlling transport on the nanoscale. Reviews of Modern Physics, 81, 387–442, doi:10.1103/RevModPhys.81.387, http://link.aps.org/doi/10.1103/RevModPhys.81.387.

  37. Astumian, R. D., & Hanggi, P. (2002). Brownian Motors. Physics Today, 55(11), 33–39. doi:10.1063/1.1535005, http://link.aip.org/link/?PTO/55/33/1.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Viktor Holubec .

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Holubec, V. (2014). Heat Engines. In: Non-equilibrium Energy Transformation Processes. Springer Theses. Springer, Cham. https://doi.org/10.1007/978-3-319-07091-9_5

Download citation

Publish with us

Policies and ethics