Skip to main content

Electro-Optical Hysteresis of Nanoscale Hybrid Systems

  • Chapter
  • First Online:
Modelling of Plasmonic and Graphene Nanodevices

Part of the book series: Springer Theses ((Springer Theses))

  • 1159 Accesses

Abstract

A hybrid system comprising a semiconductor quantum dot in the proximity of a hetero interface of two materials is studied theoretically, and its optical response analyzed. We show that internal degrees of freedom of the system can manifest optical bistability and hysteresis as functions of the incident field intensity, which show up in various measurable characteristics. In particular, the Raylegh scattering or luminescence intensity of the system can be switched abruptly between its two stable states. On the other hand, if the refractive index of one of the materials forming the interface can be electrically modified, as it happens in the case of an indium-tin oxide/dielectric interface, the bistability and hysteresis can be controlled dynamically by changing the gate voltage. The latter opens new possibilities for applications in the field of optical and electro-optical switches, modulators or memory cells at nanoscale.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. D. Loss, D.P. DiVincenzo, Quantum computation with quantum dots. Phys. Rev. A 57, 120–126 (1998)

    Article  ADS  Google Scholar 

  2. J.R. Petta et al., Coherent manipulation of coupled electron spins in semiconductor quantum dots. Science 309, 2180–2184 (2005)

    Article  ADS  Google Scholar 

  3. J. Elzerman et al., Single-shot read-out of an individual electron spin in a quantum dot. Nature 430, 431–435 (2004)

    Article  ADS  Google Scholar 

  4. W.G. van der Wiel et al., Electron transport through double quantum dots. Rev. Mod. Phys. 75, 1–22 (2002)

    Article  ADS  Google Scholar 

  5. A.I. Ekimov et al., Absorption and intensity-dependent photoluminescence measurements on cdse quantum dots: assignment of the first electronic transitions. J. Opt. Soc. Am. B 10, 100–107 (1993)

    Article  ADS  Google Scholar 

  6. D.J. Norris, M.G. Bawendi, Measurement and assignment of the size dependent optical spectrum in cdse quantum dots. Phys. Rev. B 53, 16338–16346 (1996)

    Article  ADS  Google Scholar 

  7. P. Hawrylak, M. Korkusiński, Electronic properties of self-assembled quantum dots. Single Quant. Dots 90, 25–92 (2003)

    Article  Google Scholar 

  8. C. Simon et al., Quantum memories. Eur. Phys. J. D: At. Mol. Opt. Plasma Phys. 58, 1–22 (2010)

    Article  Google Scholar 

  9. M. Kroutvar et al., Optically programmable electron spin memory using semiconductor quantum dots. Nature 432, 81–84 (2004)

    Article  ADS  Google Scholar 

  10. R.J. Young et al., Single electron-spin memory with a semiconductor quantum dot. New J. Phys. 9, 365 (2007)

    Article  ADS  Google Scholar 

  11. W. Zhang et al., Semiconductor-metal nanoparticle molecules: hybrid excitons and the nonlinear fano effect. Phys. Rev. Lett. 97, 146804 (2006)

    Google Scholar 

  12. R.D. Artuso, G.W. Bryant, Optical response of strongly coupled quantum dot-metal nanoparticle systems: double peaked fano structure and bistability. Nano Lett. 8, 2106–2111 (2008)

    Article  ADS  Google Scholar 

  13. S.M. Sadeghi, Plasmonic metaresonances: molecular resonances in quantum dot–metallic nanoparticle conjugates. Phys. Rev. B 79, 233309 (2009)

    Google Scholar 

  14. S.M. Sadeghi, Tunable nanoswitches based on nanoparticle meta-molecules. Nanotechnology 21, 355501 (2010)

    Google Scholar 

  15. S.M. Sadeghi, Gain without inversion in hybrid quantum dot-metallic nanoparticle systems. Nanotechnology 21, 455401 (2010)

    Google Scholar 

  16. A.V. Malyshev, V.A. Malyshev, Optical bistability and hysteresis of a hybrid metal-semiconductor nanodimer. Phys. Rev. B 84, 035314 (2011)

    Google Scholar 

  17. E. Feigenbaum et al., Unity-order index change in transparent conducting oxides at visiblefrequencies. Nano Lett. 10, 2111–2116 (2010)

    Article  ADS  Google Scholar 

  18. A.L. Efros, Luminescence polarization of cdse microcrystals. Phys. Rev. B 46, 7448–7458 (1992)

    Article  ADS  Google Scholar 

  19. S. Empedocles et al., Three-dimensional orientation measurements of symmetric single chromophores using polarization microscopy. Nature 399, 126–130 (1999)

    Article  ADS  Google Scholar 

  20. A.I. Chizhik et al., Excitation isotropy of single cdse/zns nanocrystals. Nano Lett. 11, 1131–1135 (2011)

    Article  ADS  Google Scholar 

  21. L. Allen, J. Eberly, Optical Resonance and Two-Level Atoms. (Dover, New York, 1975)

    Google Scholar 

  22. C.F. Bohren, D.R. Huffman, Absorption and Scattering of Light by Small Particles. (Wiley, New York, 1983)

    Google Scholar 

  23. M. Paulus et al., Accurate and effcient computation of the green’s tensor for stratified media. Phys. Rev. E 62, 5797–5807 (2000)

    Article  ADS  Google Scholar 

  24. M. Kildemo et al., Approximation of re ection coeficients for rapid real-time calculation of inhomogeneous films. J. Opt. Soc. Am. A 14, 931–939 (1997)

    Article  ADS  Google Scholar 

  25. A.V. Malyshev, Condition for resonant optical bistability. Phys. Rev. A 86, 065804 (2012)

    Google Scholar 

  26. B.S. Nugroho et al., Bistable optical response of nanoparticle heterodimer: mechanism, phase diagram, and switching time. ArXiv e-prints 1209, 3255 (2012)

    ADS  Google Scholar 

  27. R. Friedberg et al., Mirrorless optical bistability condition. Phys. Rev. A 39, 3444–3446 (1989)

    Article  ADS  Google Scholar 

  28. A.J. Ramsay et al., Damping of exciton rabi rotations by acoustic phonons in optically excited InGaAs/GaAs quantum dots. Phys. Rev. Lett. 104, 017402 (2010)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Javier Munárriz Arrieta .

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Munárriz Arrieta, J. (2014). Electro-Optical Hysteresis of Nanoscale Hybrid Systems. In: Modelling of Plasmonic and Graphene Nanodevices. Springer Theses. Springer, Cham. https://doi.org/10.1007/978-3-319-07088-9_7

Download citation

Publish with us

Policies and ethics