Skip to main content

Optical Nanoantennas with Tunable Radiation Patterns

  • Chapter
  • First Online:
Modelling of Plasmonic and Graphene Nanodevices

Part of the book series: Springer Theses ((Springer Theses))

  • 1170 Accesses

Abstract

We address new optical nano-antenna systems with tunable highly directional radiation patterns. The antenna comprises a regular linear array of metal nanoparticles in the proximity of an interface with high dielectric contrast. We show that the radiation pattern of the system can be controlled by changing parameters of the excitation, such as the polarization and/or incidence angles. In the case of excitation under the total reflection condition, the system operates as a nanoscopic source of radiation, converting the macroscopic incident plane wave front into a narrow beam of light with adjustable characteristics. We derive also simple analytical formulas which give an excellent description of the radiation pattern and provide a useful tool for analysis and antenna design.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    These approximations are exact for an infinite system.

  2. 2.

    The derivation of the formula is analogous to the one made by Von Laue to study the X-ray diffraction in crystalline structures.

References

  1. S.A. Maier, H.A. Atwater, Plasmonics: localization and guiding of electromagnetic energy in metal/dielectric structures. J. Appl. Phys. 98, 011101 (2005)

    Google Scholar 

  2. L. Novotny, B. Hecht, Principles of Nano-Optics (Cambridge University Press, Cambridge, 2006)

    Google Scholar 

  3. S. Maier, Plasmonics: Fundamentals and Applications. (Springer, New York, 2007)

    Google Scholar 

  4. E. Ozbay, Plasmonics: merging photonics and electronics at nanoscale dimensions. Science 311, 189–193 (2006)

    Article  ADS  Google Scholar 

  5. R. de Waele et al., Tunable nanoscale localization of energy on plasmon particle arrays. Nano Lett. 7, 2004–2008 (2007)

    Article  ADS  Google Scholar 

  6. H.A. Atwater, A. Polman, Plasmonics for improved photovoltaic devices. Nat. Mater. 9, 205–213 (2010)

    Article  ADS  Google Scholar 

  7. M.L. Brongersma, Plasmonics: engineering optical nanoantennas. Nat. Photonics 2, 270–272 (2008)

    Article  ADS  Google Scholar 

  8. P. Bharadwaj et al., Optical antennas. Adv. Opt. Photonics 1, 438–483 (2009)

    Article  Google Scholar 

  9. L. Novotny, N. van Hulst, Antennas for light. Nat. Photonics 5, 83–90 (2011)

    Article  ADS  Google Scholar 

  10. E.S. Barnard et al., Spectral properties of plasmonic resonator antennas. Opt. Express 16, 16529–16537 (2008)

    Article  ADS  Google Scholar 

  11. Z. Zhang et al., Manipulating nanoscale light fields with the asymmetric Bowtie nano-colorsorter. Nano Lett. 9, 4505–4509 (2009)

    Article  ADS  Google Scholar 

  12. Y.-Y. Yang et al., Steering the optical response with asymmetric bowtie 2-color controllers in the visible and near infrared range. Opt. Commun. 284, 3474–3478 (2011)

    Article  ADS  Google Scholar 

  13. T. Coenen et al., Directional emission from plasmonic Yagi-Uda antennas probed by angle-resolved cathodoluminescence spectroscopy. Nano Lett. 11, 3779–3784 (2011)

    Article  ADS  Google Scholar 

  14. A.V. Malyshev et al., Frequency-controlled localization of optical signals in graded plasmonic chains. Nano Lett. 8, 2369–2372 (2008)

    Article  ADS  Google Scholar 

  15. R.S. Pavlov et al., Log-periodic optical antennas with broadband directivity. Opt. Commun. 285, 3334–3340 (2012)

    Article  ADS  Google Scholar 

  16. P. Biagioni et al., Cross resonant optical antenna. Phys. Rev. Lett. 102, 256801 (2009)

    Google Scholar 

  17. R. Bardhan et al., Metallic nanoshells with semiconductor cores: optical characteristics modified by core medium properties. ACS Nano 4, 6169–6179 (2010)

    Article  Google Scholar 

  18. T.H. Taminiau et al., Optical nanorod antennas modeled as cavities for dipolar emitters: evolution of sub- and super-radiant modes. Nano Lett. 11, 1020–1024 (2011)

    Article  ADS  Google Scholar 

  19. S. Palomba et al., Nonlinear plasmonics with gold nanoparticle antennas. J. Opt. A: Pure Appl. Opt. 11, 114030 (2009)

    Google Scholar 

  20. N. Liu et al., Nanoantenna-enhanced gas sensing in a single tailored nanofocus. Nat. Mater. 10, 631–636 (2011)

    Article  ADS  Google Scholar 

  21. P. Bharadwaj et al., Nanoscale spectroscopy with optical antennas. Chem. Sci. 2, 136–140 (2011)

    Article  Google Scholar 

  22. S.Y. Park, D. Stroud, Surface-plasmon dispersion relations in chains of metallic nanoparticles: an exact quasistatic calculation. Phys. Rev. B 69, 125418 (2004)

    Google Scholar 

  23. J.-Y. Yan et al., Optical properties of coupled metal-semiconductor and metalmolecule nanocrystal complexes: role of multipole effects, Phys. Rev. B 77, 165301 (2008)

    Google Scholar 

  24. F.J. García de Abajo, A. Howie, Retarded field calculation of electron energy loss in inhomogeneous dielectrics. Phys. Rev. B 65, 115418 (2002)

    Google Scholar 

  25. J.M. Gérardy, M. Ausloos, Absorption spectrum of clusters of spheres from the general solution of Maxwell’s equations. II. optical properties of aggregated metal spheres. Phys. Rev. B 25, 4204–4229 (1982)

    Article  ADS  Google Scholar 

  26. M. Meier, A. Wokaun, Enhanced fields on large metal particles: dynamic depolarization. Opt. Lett. 8, 581–583 (1983)

    Article  ADS  Google Scholar 

  27. G. Mie, Beiträge zur Optik trüber Medien, speziell kolloidaler Metallosungen. Annalen der Physik 25, 377–445 (1908)

    Article  MATH  ADS  Google Scholar 

  28. C.F. Bohren, D.R. Hugffman, Absorption and Scattering of Light by Small Particles (Wiley, New York, 1983)

    Google Scholar 

  29. M.S. Tomaš, Green function for multilayers: light scattering in planar cavities. Phys. Rev. A 51, 2545–2559 (1995)

    Article  ADS  Google Scholar 

  30. E. Palik, Handbook of Optical Constants of Solids. (Academic Pres, Boston, 1998)

    Google Scholar 

  31. W. Chew, Waves and Fields in Inhomogeneous Media. (IEEE Press, New York, 1999)

    Google Scholar 

  32. C. Balanis, Antenna Theory: Analysis and Design. (Wiley, New York, 1982)

    Google Scholar 

  33. E. Prodan et al., A hybridization model for the plasmon response of complex nanostructures. Science 302, 419–422 (2003)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Javier Munárriz Arrieta .

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Munárriz Arrieta, J. (2014). Optical Nanoantennas with Tunable Radiation Patterns. In: Modelling of Plasmonic and Graphene Nanodevices. Springer Theses. Springer, Cham. https://doi.org/10.1007/978-3-319-07088-9_6

Download citation

Publish with us

Policies and ethics