Skip to main content

Graphene Nanoring as a Source of Spin-Polarized Electrons

  • Chapter
  • First Online:
Modelling of Plasmonic and Graphene Nanodevices

Part of the book series: Springer Theses ((Springer Theses))

  • 1152 Accesses

Abstract

We propose a novel spin filter based on a graphene nanoring fabricated above a ferromagnetic strip. The exchange interaction between the magnetic moments of the ions in the ferromagnet and the electron spin splits the electronic states, and gives rise to spin polarization of the conductance and the total electric current. We demonstrate that both the current and its polarization can be controlled by a side-gate voltage. This opens the possibility to use the proposed device as a tunable source of polarized electrons.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. C.L. Kane, E.J. Mele, Quantum spin hall effect in graphene. Phys. Rev. Lett. 95, 226801 (2005)

    Google Scholar 

  2. N. Tombros et al., Electronic spin transport and spin precession in single graphene layers at room temperature. Nature 448, 571–574 (2007)

    Article  ADS  Google Scholar 

  3. O.V. Yazyev, Hyperfine interactions in graphene and related carbon nanostructures. Nano Lett. 8, 1011–1015 (2008)

    Article  ADS  Google Scholar 

  4. E. Hill et al., Graphene spin valve devices. IEEE Trans. Magn. 42, 2694–2696 (2006)

    Article  ADS  Google Scholar 

  5. S. Cho et al., Gate-tunable graphene spin valve. Appl. Phys. Lett. 91, 123105 (2007)

    Google Scholar 

  6. C. Józsa et al., Electronic spin drift in graphene field-effect transistors. Phys. Rev. Lett. 100, 236603 (2008)

    Google Scholar 

  7. Y.S. Dedkov et al., Structural and electronic properties of Fe3O4/graphene/Ni(111) junctions. Phys. Status Solidi RRL 5, 226–228 (2011)

    Article  Google Scholar 

  8. Z.P. Niu, D.Y. Xing, Spin filter effect and large magnetoresistance in the zigzag graphene nanoribbons. Eur. Phys. J. B 143, 139–143 (2010)

    Article  ADS  Google Scholar 

  9. M. Ezawa, Spin filter, spin amplifier and other spintronic applications in graphene nanodisks. Eur. Phys. J. B 67, 543–549 (2009)

    Article  ADS  Google Scholar 

  10. F.S.M. Guimarães et al., Graphene-based spin-pumping transistor. Phys. Rev. B 81, 233402 (2010)

    Google Scholar 

  11. F. Zhai, L. Yang, Strain-tunable spin transport in ferromagnetic graphene junctions. Appl. Phys. Lett. 98, 062101 (2011)

    Google Scholar 

  12. A. Rozhkov et al., Electronic properties of mesoscopic graphene structures: Charge confinement and control of spin and charge transport. Phys. Rep. 503, 77–114 (2011)

    Article  ADS  Google Scholar 

  13. A.G. Swartz et al., Integration of the ferromagnetic insulator EuO onto graphene. ACS Nano 6, 10063–10069 (2012)

    Article  Google Scholar 

  14. H. Haugen et al., Spin transport in proximity-induced ferromagnetic graphene. Phys. Rev. B 77, 115406 (2008)

    Google Scholar 

  15. J. Zou et al., Negative tunnel magnetoresistance and spin transport in ferromagnetic graphene junctions. J. Phys.: Condens. Matt. 21, 126001 (2009)

    Google Scholar 

  16. Y. Gu et al., Equilibrium spin current in ferromagnetic graphene junction. J. Appl. Phys. 105, 103711 (2009)

    Google Scholar 

  17. Y.-W. Son et al., Energy gaps in graphene nanoribbons. Phys. Rev. Lett. 97, 216803 (2006)

    Google Scholar 

  18. A. H. Castro Neto et al. The electronic properties of graphene. Rev. Mod. Phys. 81, 109–162 (2009)

    Google Scholar 

  19. A. Venugopal et al., Contact resistance in few and multilayer graphene devices. Appl. Phys. Lett. 96, 013512 (2010)

    Google Scholar 

  20. U. Fano, Effects of configuration interaction on intensities and phase shifts. Phys. Rev. 124, 1866–1878 (1961)

    Article  MATH  ADS  Google Scholar 

  21. A.E. Miroshnichenko et al., Fano resonances in nanoscale structures. Rev. Mod. Phys. 82, 2257–2298 (2010)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Javier Munárriz Arrieta .

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Munárriz Arrieta, J. (2014). Graphene Nanoring as a Source of Spin-Polarized Electrons. In: Modelling of Plasmonic and Graphene Nanodevices. Springer Theses. Springer, Cham. https://doi.org/10.1007/978-3-319-07088-9_4

Download citation

Publish with us

Policies and ethics