Skip to main content

Tight-Binding Description of Graphene Nanostructures

  • Chapter
  • First Online:
Modelling of Plasmonic and Graphene Nanodevices

Part of the book series: Springer Theses ((Springer Theses))

Abstract

An intuitive approach to some electronic properties of graphene and graphene nanoribbons is derived, by means of a Tight Binding description. Within the same model, key concepts of coherent electronic transport are reviewed. This chapter, in combination with Appendix A, build the framework with which the electronic properties of graphene nanostructures can be modelled and analyzed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. P.R. Wallace, The band theory of graphite. Phys. Rev. 71, 622–634 (1947)

    Article  MATH  ADS  Google Scholar 

  2. A.H. Castro Neto et al., The electronic properties of graphene. Rev. Mod. Phys. 81, 109–162 (2009)

    Article  ADS  Google Scholar 

  3. S. Reich et al., Tight-binding description of graphene. Phys. Rev. B 66, 035412 (2002)

    Google Scholar 

  4. G.W. Semenoff, Condensed-matter simulation of a three-dimensional anomaly. Phys. Rev. Lett. 53, 2449–2452 (1984)

    Article  MathSciNet  ADS  Google Scholar 

  5. O. Klein, Die Re exion von Elektronen an einem Potentialsprung nach der relativistischen Dynamik von Dirac. Z. Phys. A: Hadrons Nucl. 53, 157–165 (1929)

    Article  MATH  Google Scholar 

  6. R. Saito et al., Trigonal warping effect of carbon nanotubes. Phys. Rev. B 61, 2981–2990 (2000)

    Article  ADS  Google Scholar 

  7. F. Guinea et al., Electronic states and Landau levels in graphene stacks. Phys. Rev. B 73, 245426 (2006)

    Google Scholar 

  8. B. Partoens, F.M. Peeters, From graphene to graphite: electronic structure around the K point. Phys. Rev. B 74, 075404 (2006)

    Google Scholar 

  9. Y. Zhang et al., Direct observation of a widely tunable bandgap in bilayer graphene. Nature 459, 820–823 (2009)

    Article  ADS  Google Scholar 

  10. D.C. Elias et al., Control of graphene’s properties by reversible hydrogenation: evidence for graphane. Science 323, 610–613 (2009)

    Article  ADS  Google Scholar 

  11. R. Balog et al., Bandgap opening in graphene induced by patterned hydrogen adsorption. Nat. Mater. 9, 315–319 (2010)

    Article  ADS  Google Scholar 

  12. J.G. Pedersen, T.G. Pedersen, Band gaps in graphene via periodic electrostatic gating. Phys. Rev. B 85, 235432 (2012)

    Google Scholar 

  13. F. Guinea et al., Energy gaps and a zero-field quantum Hall effect in graphene by strain engineering. Nat. Phys. 6, 30–33 (2010)

    Article  Google Scholar 

  14. S.-M. Choi et al., Effects of strain on electronic properties of graphene. Phys. Rev. B 81, 081407 (2010)

    Google Scholar 

  15. M. Kim et al., Fabrication and characterization of large-area, semiconducting nanoperforated graphene materials. Nano Lett. 10, 1125–1131 (2010)

    Article  ADS  Google Scholar 

  16. L. Yang et al., Quasiparticle energies and band gaps in graphene nanoribbons. Phys. Rev. Lett. 99, 186801 (2007)

    Google Scholar 

  17. M.Y. Han et al., Energy band-gap engineering of graphene nanoribbons. Phys. Rev. Lett. 98, 206805 (2007)

    Google Scholar 

  18. J. Cai et al., Atomically precise bottom-up fabrication of graphene nanoribbons. Nature 466, 470–473 (2010)

    Article  ADS  Google Scholar 

  19. L. Döossel et al., Graphene nanoribbons by chemists: nanometer-sized, soluble, and defect-free. Angew. Chem. Int. Ed. 50, 2540–2543 (2011)

    Article  Google Scholar 

  20. D.V. Kosynkin et al., Longitudinal unzipping of carbon nanotubes to form graphene nanoribbons. Nature 458, 872–876 (2009)

    Article  ADS  Google Scholar 

  21. L. Jiao et al., Narrow graphene nanoribbons from carbon nanotubes. Nature 458, 877–880 (2009)

    Article  ADS  Google Scholar 

  22. J. Schelter et al., Interplay of the Aharonov-Bohm effect and Klein tunneling in graphene. Phys. Rev. B 81, 195441 (2010)

    Google Scholar 

  23. K. Wakabayashi et al., Electronic transport properties of graphene nanoribbons. New J. Phys. 11, 095016 (2009)

    Google Scholar 

  24. W. Greiner, Relativistic Quantum Mechanics: Wave Equations (Springer, Berlin, 2000)

    Google Scholar 

  25. P. Koskinen et al., Self-passivating edge reconstructions of graphene. Phys. Rev. Lett. 101, 115502 (2008)

    Google Scholar 

  26. W.Y. Kim, K.S. Kim, Prediction of very large values of magnetoresistance in a graphene nanoribbon device. Nature Nanotechnol. 3, 408–412 (2008)

    Article  Google Scholar 

  27. O.V. Yazyev, M.I. Katsnelson, Magnetic correlations at graphene edges: basis for novel spintronics devices. Phys. Rev. Lett. 100, 047209 (2008)

    Google Scholar 

  28. M. Büttiker et al., Generalized many-channel conductance formula with application to small rings. Phys. Rev. B 31, 6207–6215 (1985)

    Article  ADS  Google Scholar 

  29. D. Ferry, S. Goodnick, Transport in Nanostructures (Cambridge University Press, Cambridge, 1997)

    Book  Google Scholar 

  30. S. Datta, Electronic Transport in Mesoscopic Systems (Cambridge University Press, Cambridge, 1997)

    Google Scholar 

  31. E.A. de Andrada e Silva, Probability current in the tight-binding model. Am. J. Phys. 60, 753–754 (1992)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Javier Munárriz Arrieta .

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Munárriz Arrieta, J. (2014). Tight-Binding Description of Graphene Nanostructures. In: Modelling of Plasmonic and Graphene Nanodevices. Springer Theses. Springer, Cham. https://doi.org/10.1007/978-3-319-07088-9_2

Download citation

Publish with us

Policies and ethics