Skip to main content

Part of the book series: Springer Theses ((Springer Theses))

  • 1168 Accesses

Abstract

In the introduction to this Thesis, a general overview of the state of the art in graphene nano-devices, as well as in electro-optical devices, is presented. It includes a general introduction to the subjects for non-experts, as well as numerous citations to relevant published works..

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    For all abbreviations see the glossary on page viii.

References

  1. K.S. Novoselov et al., Electric field effect in atomically thin carbon films. Science 306, 666–669 (2004)

    Article  ADS  Google Scholar 

  2. K.I. Bolotin et al., Temperature-dependent transport in suspended graphene. Phys. Rev. Lett. 101, 096802 (2008)

    Article  ADS  Google Scholar 

  3. C.L. Kane, E.J. Mele, Quantum spin hall effect in graphene. Phys. Rev. Lett. 95, 226801 (2005)

    Article  ADS  Google Scholar 

  4. N. Tombros et al., Electronic spin transport and spin precession in single graphene layers at room temperature. Nature 448, 571–574 (2007)

    Article  ADS  Google Scholar 

  5. O.V. Yazyev, Hyperfine interactions in graphene and related carbon nanostructures. Nano Lett. 8, 1011–1015 (2008)

    Article  ADS  Google Scholar 

  6. F. Bonaccorso et al., Graphene photonics and optoelectronics. Nat. Photonics 4, 611–622 (2010)

    Article  ADS  Google Scholar 

  7. X. Wang et al., Transparent, conductive graphene electrodes for dye-sensitized solar cells. Nano Lett. 8, 323–327 (2008)

    Article  ADS  Google Scholar 

  8. X. Li et al., Transfer of large-area graphene films for high-performance transparent conductive electrodes. Nano Lett. 9, 4359–4363 (2009)

    Article  ADS  Google Scholar 

  9. J. Chen et al., Optical nano-imaging of gate-tunable graphene plasmons. Nature 487, 77–81 (2012)

    ADS  Google Scholar 

  10. Z. Fei et al., Gate-tuning of graphene plasmons revealed by infrared nano-imaging. Nature 487, 82–85 (2012)

    ADS  Google Scholar 

  11. S. Thongrattanasiri et al., Complete optical absorption in periodically patterned graphene. Phys. Rev. Lett. 108, 047401 (2012)

    Article  ADS  Google Scholar 

  12. D.C. Elias et al., Control of graphene’s properties by reversible hydrogenation: evidence for graphane. Science 323, 610–613 (2009)

    Article  ADS  Google Scholar 

  13. S. Patchkovskii et al., Graphene nanostructures as tunable storage media for molecular hydrogen. Proc. Nat. Acad. Sci. U.S.A. 102, 10439–10444 (2005)

    Article  ADS  Google Scholar 

  14. G.K. Dimitrakakis et al., Pillared graphene: a new 3-D network nanostructure for enhanced hydrogen storage. Nano Lett. 8, 3166–3170 (2008)

    Article  ADS  Google Scholar 

  15. F. Schwierz, Graphene transistors. Nat. Nanotechnol. 5, 487–496 (2010)

    Article  ADS  Google Scholar 

  16. Y. Wu et al., High-frequency, scaled graphene transistors on diamond-like carbon. Nature 472, 74–78 (2011)

    Article  ADS  Google Scholar 

  17. S.-J. Han et al., High-frequency graphene voltage amplifier. Nano Lett. 11, 3690–3693 (2011)

    Article  ADS  Google Scholar 

  18. X. Li et al., Large-area synthesis of high-quality and uniform graphene films on copper foils. Science 324, 1312–1314 (2009)

    Article  ADS  Google Scholar 

  19. S. Bae et al., Roll-to-roll production of 30-inch graphene films for transparent electrodes. Nat. Nanotechnol. 5, 574–578 (2010)

    Article  ADS  Google Scholar 

  20. F. Guinea et al., Electronic states and Landau levels in graphene stacks. Phys. Rev. B 73, 245426 (2006)

    Article  ADS  Google Scholar 

  21. B. Partoens, F.M. Peeters, From graphene to graphite: electronic structure around the K point. Phys. Rev. B 74, 075404 (2006)

    Article  ADS  Google Scholar 

  22. Y. Zhang et al., Direct observation of a widely tunable bandgap in bilayer graphene. Nature 459, 820–823 (2009)

    Article  ADS  Google Scholar 

  23. R. Balog et al., Bandgap opening in graphene induced by patterned hydrogen adsorption. Nat. Mater. 9, 315–319 (2010)

    Article  ADS  Google Scholar 

  24. J.G. Pedersen, T.G. Pedersen, Band gaps in graphene via periodic electrostatic gating. Phys. Rev. B 85, 235432 (2012)

    Article  ADS  Google Scholar 

  25. F. Guinea et al., Energy gaps and a zero-field quantum hall effect in graphene by strain engineering. Nat. Phys. 6, 30–33 (2010)

    Article  Google Scholar 

  26. S.-M. Choi et al., Effects of strain on electronic properties of graphene. Phys. Rev. B 81, 081407 (2010)

    Article  ADS  Google Scholar 

  27. M. Kim et al., Fabrication and characterization of large-area, semiconducting nanoperforated graphene materials. Nano Lett. 10, 1125–1131 (2010)

    Article  ADS  Google Scholar 

  28. L. Yang et al., Quasiparticle energies and band gaps in graphene nanoribbons. Phys. Rev. Lett. 99, 186801 (2007)

    Article  ADS  Google Scholar 

  29. M.Y. Han et al., Energy band-gap engineering of graphene nanoribbons. Phys. Rev. Lett. 98, 206805 (2007)

    Article  ADS  Google Scholar 

  30. A.A. Balandin et al., Superior thermal conductivity of single-layer graphene. Nano Lett. 8, 902–907 (2008)

    Article  ADS  Google Scholar 

  31. The International Technology Roadmap for Semiconductors (ITRS). Semiconductor Industry Association (2011)

    Google Scholar 

  32. N. Ubbelohde et al., Measurement of finite-frequency current statistics in a single-electron transistor. Nat. Commun. 3, 612 (2012)

    Article  ADS  Google Scholar 

  33. L.-J. Wang et al., A graphene quantum dot with a single electron transistor as an integrated charge sensor. Appl. Phys. Lett. 97, 262113 (2010)

    Article  ADS  Google Scholar 

  34. T. Ihn et al., Graphene single-electron transistors. Mater. Today 13, 44–50 (2010)

    Article  Google Scholar 

  35. C.A. Stafford et al., The quantum interference effect transistor. Nanotechnology 18, 424014 (2007)

    Article  ADS  Google Scholar 

  36. S. Russo et al., Observation of Aharonov-Bohm conductance oscillations in a graphene ring. Phys. Rev. B 77, 085413 (2008)

    Article  ADS  Google Scholar 

  37. M. Zarenia et al., Simplified model for the energy levels of quantum rings in single layer and bilayer graphene. Phys. Rev. B 81, 045431 (2010)

    Article  ADS  Google Scholar 

  38. J. Wurm et al., Graphene rings in magnetic fields: Aharonov-Bohm effect and valley splitting. Semicond. Sci. Technol. 25, 034003 (2010)

    Article  ADS  Google Scholar 

  39. Z. Wu et al., Quantum tunneling through graphene nanorings. Nanotechnology 21, 185201 (2010)

    Article  ADS  Google Scholar 

  40. J. Schelter et al., Interplay of the Aharonov-Bohm effect and Klein tunneling in graphene. Phys. Rev. B 81, 195441 (2010)

    Article  ADS  Google Scholar 

  41. A.H. Castro Neto, F. Guinea, Impurity-induced spin-orbit coupling in graphene. Phys. Rev. Lett. 103, 026804 (2009)

    Article  ADS  Google Scholar 

  42. D. Soriano et al., Hydrogenated graphene nanoribbons for spintronics. Phys. Rev. B 81, 165409 (2010)

    Article  MathSciNet  ADS  Google Scholar 

  43. H. Haugen et al., Spin transport in proximity-induced ferromagnetic graphene. Phys. Rev. B 77, 115406 (2008)

    Article  ADS  Google Scholar 

  44. J. Zou et al., Negative tunnel magnetoresistance and spin transport in ferromagnetic graphene junctions. J. Phys.: Condens. Matter 21, 126001 (2009)

    ADS  Google Scholar 

  45. Y. Gu et al., Equilibrium spin current in ferromagnetic graphene junction. J. Appl. Phys. 105, 103711 (2009)

    Article  ADS  Google Scholar 

  46. J. Maassen et al., Graphene spintronics: the role of ferromagnetic electrodes. Nano Lett. 11, 151–155 (2011)

    Article  ADS  Google Scholar 

  47. Y.-W. Son et al., Half-metallic graphene nanoribbons. Nature 444, 347–349 (2006)

    Article  ADS  Google Scholar 

  48. Z.P. Niu, D.Y. Xing, Spin filter effect and large magnetoresistance in the zigzag graphene nanoribbons. Eur. Phys. J. B 143, 139–143 (2010)

    Article  ADS  Google Scholar 

  49. S.A. Maier, H.A. Atwater, Plasmonics: localization and guiding of electromagnetic energy in metal/dielectric structures. J. Appl. Phys. 98, 011101 (2005)

    Article  ADS  Google Scholar 

  50. P. Bharadwaj et al., Optical antennas. Adv. Opti. Photonics 1, 438–483 (2009)

    Article  Google Scholar 

  51. L. Novotny, N. van Hulst, Antennas for light. Nat. Photonics 5, 83–90 (2011)

    Article  ADS  Google Scholar 

  52. H. Tan et al., Plasmonic light trapping in thin-film silicon solar cells with improved self-assembled silver nanoparticles. Nano Lett. 12, 4070–4076 (2012)

    Article  ADS  Google Scholar 

  53. F.J. Beck et al., Tunable light trapping for solar cells using localized surface plasmons. J. Appl. Phys. 105, 114310 (2009)

    Article  ADS  Google Scholar 

  54. B.P. Rand et al., Long-range absorption enhancement in organic tandem thin- film solar cells containing silver nanoclusters. J. Appl. Phys. 96, 7519–7526 (2004)

    Article  ADS  Google Scholar 

  55. R.B. Konda et al., Surface plasmon excitation via Au nanoparticles in n-CdSe/p-Si heterojunction diodes. Appl. Phys. Lett. 91, 191111 (2007)

    Article  ADS  Google Scholar 

  56. H.A. Atwater, A. Polman, Plasmonics for improved photovoltaic devices. Nat. Mater. 9, 205–213 (2010)

    Article  ADS  Google Scholar 

  57. K.A. Willets, R.P. Van Duyne, Localized surface plasmon resonance spectroscopy and sensing. Annu. Rev. Phys. Chem. 58, 267–297 (2007)

    Article  ADS  Google Scholar 

  58. G. Raschke et al., Biomolecular recognition based on single gold nanoparticle light scattering. Nano Lett. 3, 935–938 (2003)

    Article  ADS  Google Scholar 

  59. A.D. McFarland, R.P. Van Duyne, Single silver nanoparticles as real-time optical sensors with zeptomole sensitivity. Nano Lett. 3, 1057–1062 (2003)

    Article  ADS  Google Scholar 

  60. E. Waks, D. Sridharan, Cavity QED treatment of interactions between a metal nanoparticle and a dipole emitter. Phys. Rev. A 82, 043845 (2010)

    Article  ADS  Google Scholar 

  61. S. Nie, S.R. Emory, Probing single molecules and single nanoparticles by surface-enhanced Raman scattering. Science 275, 1102–1106 (1997)

    Article  Google Scholar 

  62. A.D. McFarland et al., Wavelength-scanned surface-enhanced Raman excitation spectroscopy. J. Phys. Chem. B 109, 11279–11285 (2005)

    Article  Google Scholar 

  63. A. Kinkhabwala et al., Large single-molecule fluorescence enhancements produced by a bowtie nanoantenna. Nat. Photonics 3, 654–657 (2009)

    Article  ADS  Google Scholar 

  64. C. Höoppener et al., Self-similar gold-nanoparticle antennas for a cascaded enhancement of the optical field. Phys. Rev. Lett. 109, 017402 (2012)

    Article  ADS  Google Scholar 

  65. H.-J. Chang et al., A photonic-crystal optical antenna for extremely large local- field enhancement. Opt. Express 18, 24163–24177 (2010)

    Article  ADS  Google Scholar 

  66. P. Biagioni et al., Nanoantennas for visible and infrared radiation. Rep. Prog. Phys. 75, 024402 (2012)

    Article  ADS  Google Scholar 

  67. R.S. Pavlov et al., Log-periodic optical antennas with broadband directivity. Opt. Commun. 285, 3334–3340 (2012)

    Article  ADS  Google Scholar 

  68. A.I. Denisyuk et al., Transmitting hertzian optical nanoantenna with free-electron feed. Nano Lett. 10, 3250–3252 (2010)

    Article  ADS  Google Scholar 

  69. T. Coenen et al., Directional emission from plasmonic Yagi-Uda antennas probed by angle-resolved cathodoluminescence spectroscopy. Nano Lett. 11, 3779–3784 (2011)

    Article  ADS  Google Scholar 

  70. F.J. García de Abajo, A. Howie, Retarded field calculation of electron energy loss in inhomogeneous dielectrics. Phys. Rev. B 65, 115418 (2002)

    Article  ADS  Google Scholar 

  71. K. Yee, Numerical solution of initial boundary value problems involving maxwell’s equations in isotropic media. IEEE Trans. Antennas Propag. 14, 302–307 (1966)

    Article  MATH  ADS  Google Scholar 

  72. A.F. Oskooi et al., Meep: a flexible free-software package for electromagnetic simulations by the FDTD method. Comput. Phys. Commun. 181, 687–702 (2010)

    Article  MATH  ADS  Google Scholar 

  73. A.D. Yoffe, Semiconductor quantum dots and related systems: electronic, optical, luminescence and related properties of low dimensional systems. Adv. Phys. 50, 1–208 (2001)

    Article  ADS  Google Scholar 

  74. A.I. Ekimov et al., Absorption and intensity-dependent photoluminescence measurements on CdSe quantum dots: assignment of the first electronic transitions. J. Opt. Soc. Am. B: Opt. Phys. 10, 100–107 (1993)

    Article  ADS  Google Scholar 

  75. D.J. Norris, M.G. Bawendi, Measurement and assignment of the sizedependent optical spectrum in CdSe quantum dots. Phys. Rev. B 53, 16338–16346 (1996)

    Article  ADS  Google Scholar 

  76. S. Kalele et al., Nanoshell particles: synthesis, properties and applications. Curr. Sci. 91, 1038–1052 (2006)

    Google Scholar 

  77. R. Gill et al., Semiconductor quantum dots for bioanalysis. Angew. Chem. Int. Ed. 47, 7602–7625 (2008)

    Article  Google Scholar 

  78. A. Roda et al., Bio- and chemiluminescence in bioanalysis. Fresenius J. Anal. Chem. 366, 752–759 (2000)

    Article  Google Scholar 

  79. L. Sheeney-Haj-Ichia et al., Efficient generation of photocurrents by using CdS/carbon nanotube assemblies on electrodes. Angew. Chem. Int. Ed. 44, 78–83 (2005)

    Article  Google Scholar 

  80. S. Rüuhle et al., Quantum-dot-sensitized solar cells. ChemPhysChem 11, 2290–2304 (2010)

    Article  Google Scholar 

  81. A.J. Nozik, Nanoscience and nanostructures for photovoltaics and solar fuels. Nano Lett. 10, 2735–2741 (2010)

    Article  ADS  Google Scholar 

  82. R.D. Schaller, V.I. Klimov, High efficiency carrier multiplication in PbSe nanocrystals: implications for solar energy conversion. Phys. Rev. Lett. 92, 186601 (2004)

    Article  ADS  Google Scholar 

  83. A. Kongkanand et al., Quantum dot solar cells. Tuning photoresponse through size and shape control of CdSe-TiO\(_2\) architecture. J. Am. Chem. Soc. 130, 4007–4015 (2008)

    Article  Google Scholar 

  84. D. Loss, D.P. DiVincenzo, Quantum computation with quantum dots. Phys. Rev. A 57, 120–126 (1998)

    Article  ADS  Google Scholar 

  85. W.G. van der Wiel et al., Electron transport through double quantum dots. Rev. Mod. Phys. 75, 1–22 (2002)

    Article  ADS  Google Scholar 

  86. J.R. Petta et al., Coherent manipulation of coupled electron spins in semiconductor quantum dots. Science 309, 2180–2184 (2005)

    Article  ADS  Google Scholar 

  87. C. Simon et al., Quantum memories. Eur. Phys. J. D 58, 1–22 (2010)

    Article  ADS  Google Scholar 

  88. M. Kroutvar et al., Optically programmable electron spin memory using semiconductor quantum dots. Nature 432, 81–84 (2004)

    Article  ADS  Google Scholar 

  89. R.J. Young et al., Single electron-spin memory with a semiconductor quantum dot. New J. Phys. 9, 365 (2007)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Javier Munárriz Arrieta .

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Munárriz Arrieta, J. (2014). Introduction. In: Modelling of Plasmonic and Graphene Nanodevices. Springer Theses. Springer, Cham. https://doi.org/10.1007/978-3-319-07088-9_1

Download citation

Publish with us

Policies and ethics