Skip to main content

Dissipation and Kullback–Leibler Divergence

  • Chapter
  • First Online:
Irreversibility and Dissipation in Microscopic Systems

Part of the book series: Springer Theses ((Springer Theses))

  • 737 Accesses

Abstract

In this chapter, we introduce the theoretical framework of the first part of our work, in which we study of the relationship between dissipation and irreversibility quantitatively in microscopic systems in the stationary state.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    However, a recent work shows that, if the neglected information contains an external driving, the entropy production estimated in the coarse grained system can be bigger than the real entropy production [8].

  2. 2.

    A sequence of a random variable \(X\), given by \(X_1,X_2,\ldots \), is said to converge almost surely to \(x\) when the probability that the sequence satisfies \(\lim _{n\rightarrow \infty } X_n = x\) is equal to \(1\).

References

  1. D. Andrieux, P. Gaspard, S. Ciliberto, N. Garnier, S. Joubaud, A. Petrosyan, Phys. Rev. Lett. 98, 150601 (2007)

    Article  ADS  Google Scholar 

  2. D. Andrieux, P. Gaspard, Proc. Nat. Acad. Sci. 105, 9516–9521 (2008)

    Article  ADS  Google Scholar 

  3. D. Andrieux, P. Gaspard, S. Ciliberto, N. Garnier, S. Joubaud, A. Petrosyan, J. Stat. Mech: Theory Exp. 2008, P01002 (2008)

    Google Scholar 

  4. T. M. Cover, J. A. Thomas, Elements of Information Theory (Wiley-interscience, New York, 2006)

    Google Scholar 

  5. A. Crisanti, G. Paladin, A. Vulpiani, Products of Random Matrices in Statistical Physics (Springer Series in Solid State Sciences) vol. 104 (Springer-Verlag, Berlin, 1993) p. 166

    Google Scholar 

  6. G. Crooks, Phys. Rev. E 60, 2721 (1999)

    Article  ADS  Google Scholar 

  7. M. De Oliveira, A. Petri, Phys. Rev. E 53, 2960 (1996)

    Article  ADS  Google Scholar 

  8. M. Esposito, J.M.R. Parrondo, In preparation (2013)

    Google Scholar 

  9. P. Gaspard, J. Stat. Phys. 117, 599–615 (2004)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  10. A. Gomez-Marin, J.M.R. Parrondo, C. Van den Broeck, Phys. Rev. E 78, 011107 (2008)

    Google Scholar 

  11. A. Gomez-Marin, J.M.R. Parrondo, C. Van den Broeck, EPL-Europhys. Lett. 82, 50002–54000 (2008)

    Google Scholar 

  12. T. Holliday, A. Goldsmith, P. Glynn, IEEE Trans. Inf. Theory 52, 3509–3532 (2006)

    Google Scholar 

  13. J. Horowitz, C. Jarzynski, Phys. Rev. E 79, 21106 (2009)

    Article  ADS  Google Scholar 

  14. P. Jacquet, G. Seroussi, W. Szpankowski, Theoret. Comput. Sci. 395, 203–219 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  15. R. Kawai, J.M.R. Parrondo, C.V. den Broeck, Phys. Rev. Lett. 98, 80602 (2007)

    Google Scholar 

  16. D. Kondepudi, I. Prigogine, From Heat Engines to Dissipative Structures (Wiley, New York, 1998)

    Google Scholar 

  17. S. Kullback, R.A. Leibler, Ann. Math. Stat. 22, 79–86 (1951)

    Article  MATH  MathSciNet  Google Scholar 

  18. L. Lacasa, A. Nuñez, É. Roldán, J.M.R. Parrondo, B. Luque, Eur. Phys. J. B-Condensed Matter and Complex Systems 85, 1–11 (2012)

    Google Scholar 

  19. R. Landauer, IBM J. Res. Dev. 5, 183–191 (1961)

    Article  MATH  MathSciNet  Google Scholar 

  20. C. Maes, Séminaire Poincaré 2, 29–62 (2003)

    Google Scholar 

  21. J.M.R. Parrondo, B. Cisneros, Appl. Phys. A Mater. Sci. Process. 75, 179–191 (2002)

    Google Scholar 

  22. J.M.R. Parrondo, C. Van den Broeck, R. Kawai, New J. Phys. 11, 073008 (2009)

    Google Scholar 

  23. L.R. Rabiner, Proc. IEEE 77, 257–286 (1989)

    Article  Google Scholar 

  24. É. Roldán, J.M.R. Parrondo, Phys. Rev. Lett. 105, 150607 (2010)

    Google Scholar 

  25. É. Roldán, J.M.R. Parrondo, Phys. Rev. E 85, 031129 (2012)

    Google Scholar 

  26. U. Seifert, Phys. Rev. Lett. 95, 40602 (2005)

    Article  ADS  Google Scholar 

  27. N. G. Van Kampen, Stochastic Processes in Physics and Chemistry, vol. 1 (North holland, 1992)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Édgar Roldán .

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Roldán, É. (2014). Dissipation and Kullback–Leibler Divergence. In: Irreversibility and Dissipation in Microscopic Systems. Springer Theses. Springer, Cham. https://doi.org/10.1007/978-3-319-07079-7_2

Download citation

Publish with us

Policies and ethics